3,045 research outputs found

    Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM

    Get PDF
    Octahedrally shaped Pt–Ni alloy nanoparticles on carbon supports have demonstrated unprecedented electrocatalytic activity for the oxygen reduction reaction (ORR), sparking interest as catalysts for low-temperature fuel cell cathodes. However, deterioration of the octahedral shape that gives the catalyst its superior activity currently prohibits the use of shaped catalysts in fuel cell devices, while the structural dynamics of the overall catalyst degradation are largely unknown. We investigate the time-resolved degradation pathways of such a Pt–Ni alloy catalyst supported on carbon during cycling and startup/shutdown conditions using an in situ STEM electrochemical liquid cell, which allows us to track changes happening over seconds. Thereby we can precisely correlate the applied electrochemical potential with the microstructural response of the catalyst. We observe changes of the nanocatalysts’ structure, monitor particle motion and coalescence at potentials that corrode carbon, and investigate the dissolution and redeposition processes of the nanocatalyst under working conditions. Carbon support motion, particle motion, and particle coalescence were observed as the main microstructural responses to potential cycling and holds in regimes where carbon corrosion happens. Catalyst motion happened more severely during high potential holds and sudden potential changes than during cyclic potential sweeps, despite carbon corrosion happening during both, as suggested by ex situ DEMS results. During an extremely high potential excursion, the shaped nanoparticles became mobile on the carbon support and agglomerated facet-to-facet within 10 seconds. These experiments suggest that startup/shutdown potential treatments may cause catalyst coarsening on a much shorter time scale than full collapse of the carbon support. Additionally, the varying degrees of attachment of particles on the carbon support indicates that there is a distribution of interaction strengths, which in the future should be optimized for shaped particles. We further track the dissolution of Ni nanoparticles and determine the dissolution rate as a function of time for an individual nanoparticle – which occurs over the course of a few potential cycles for each particle. This study provides new visual understanding of the fundamental structural dynamics of nanocatalysts during fuel cell operation and highlights the need for better catalyst-support anchoring and morphology for allowing these highly active shaped catalysts to become useful in PEM fuel cell applications.TU Berlin, Open-Access-Mittel - 201

    The channel-activating protease CAP1/Prss8 is required for placental labyrinth maturation.

    Get PDF
    The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function

    The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF.

    Get PDF
    The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required for successful survival and maturation of splenic B cells. To test whether the effect of BAFF is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein (FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent antibody responses. However, many B cells retained immaturity markers and failed to express normal amounts of CD21. Marginal zone B cells were not restored and the T-independent IgG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but also to promote differentiation events, in particular those leading to the generation of marginal zone B cells

    Immortalized myogenic cells from congenital muscular dystrophy type1A patients recapitulate aberrant caspase activation in pathogenesis: a new tool for MDC1A research

    Get PDF
    BACKGROUND: Congenital muscular dystrophy Type 1A (MDC1A) is a severe, recessive disease of childhood onset that is caused by mutations in the LAMA2 gene encoding laminin-alpha2. Studies with both mouse models and primary cultures of human MDC1A myogenic cells suggest that aberrant activation of cell death is a significant contributor to pathogenesis in laminin-alpha2-deficiency. METHODS: To overcome the limited population doublings of primary cultures, we generated immortalized, clonal lines of human MDC1A myogenic cells via overexpression of both CDK4 and the telomerase catalytic component (human telomerase reverse transcriptase (hTERT)). RESULTS: The immortalized MDC1A myogenic cells proliferated indefinitely when cultured at low density in high serum growth medium, but retained the capacity to form multinucleate myotubes and express muscle-specific proteins when switched to low serum medium. When cultured in the absence of laminin, myotubes formed from immortalized MDC1A myoblasts, but not those formed from immortalized healthy or disease control human myoblasts, showed significantly increased activation of caspase-3. This pattern of aberrant caspase-3 activation in the immortalized cultures was similar to that found previously in primary MDC1A cultures and laminin-alpha2-deficient mice. CONCLUSIONS: Immortalized MDC1A myogenic cells provide a new resource for studies of pathogenetic mechanisms and for screening possible therapeutic approaches in laminin-alpha2-deficiency

    Sulfur partitioning between magmatic phases at sulfide-sulfate transition - Implications for metal mobility

    Get PDF
    Sulfur is a volatile component that participates in a number of processes from magma generation to volcanic eruption affecting magma properties and controlling mobility of many different elements. These effects depend on abundance and proportions of redox-sensitive S species and on their partitioning between magmatic phases..

    Reduction of brain metastases in plasminogen activator inhibitor-1-deficient mice with transgenic ocular tumors

    Get PDF
    Plasminogen activator inhibitor-1 is known to play a paradoxical positive role in tumor angiogenesis, but its contribution to metastatic spread remains unclear. We studied the impact of plasminogen activator inhibitor (PAI)-1 deficiency in a transgenic mouse model of ocular tumors originating from retinal epithelial cells and leading to brain metastasis (TRP-1/SV40 Tag mice). PAI-1 deficiency did not affect primary tumor growth or vascularization, but was associated with a smaller number of brain metastases. Brain metastases were found to be differentially distributed between the two genotypes. PAI-1-deficient mice displayed mostly secondary foci expanding from local optic nerve infiltration, whereas wild-type animals displayed more disseminated nodules in the scissura and meningeal spaces. SuperArray GEarray analyses aimed at detecting molecules potentially compensating for PAI-1 deficiency demonstrated an increase in fibroblast growth factor-1 (FGF-1) gene expression in primary tumors, which was confirmed by reverse transcription-polymerase chain reaction and western blotting. Our data provide the first evidence of a key role for PAI-1 in a spontaneous model of metastasis and suggest that angiogenic factors, such as FGF-1, may be important for primary tumor growth and may compensate for the absence of PAI-1. They identify PAI-1 and FGF-1 as important targets for combined antitumor strategie

    Key role for transforming growth factor-ÎČ in melanocyte stem cell immaturity and quiescence

    Get PDF
    Division of Stem Cell Medicin

    Neural crest–derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    Get PDF
    Given their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell–like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures. To determine the origin of these cells, we genetically mapped the fate of neural crest cells in face and trunk skin of mouse. In whisker follicles of the face, many mesenchymal structures are neural crest derived and appear to contain cells with sphere-forming potential. In the trunk skin, however, sphere-forming neural crest–derived cells are restricted to the glial and melanocyte lineages. Thus, self-renewing cells in the adult skin can be obtained from several neural crest derivatives, and these are of distinct nature in face and trunk skin. These findings are relevant for the design of therapeutic strategies because the potential of stem and progenitor cells in vivo likely depends on their nature and origin
    • 

    corecore