
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

University of Massachusetts Medical School Faculty Publications 

2013-12-06 

Immortalized myogenic cells from congenital muscular dystrophy Immortalized myogenic cells from congenital muscular dystrophy 

type1A patients recapitulate aberrant caspase activation in type1A patients recapitulate aberrant caspase activation in 

pathogenesis: a new tool for MDC1A research pathogenesis: a new tool for MDC1A research 

Soonsang Yoon 
Boston University School of Medicine 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs 

 Part of the Cell Biology Commons, Cellular and Molecular Physiology Commons, Congenital, 

Hereditary, and Neonatal Diseases and Abnormalities Commons, Molecular Genetics Commons, and the 

Musculoskeletal Diseases Commons 

Repository Citation Repository Citation 
Yoon S, Stadler G, Beermann M, Schmidt EV, Windelborn JA, Schneiderat P, Wright WE, Miller JB. (2013). 
Immortalized myogenic cells from congenital muscular dystrophy type1A patients recapitulate aberrant 
caspase activation in pathogenesis: a new tool for MDC1A research. University of Massachusetts Medical 
School Faculty Publications. https://doi.org/10.1186/2044-5040-3-28. Retrieved from 
https://escholarship.umassmed.edu/faculty_pubs/333 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of 
Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMMS. For 
more information, please contact Lisa.Palmer@umassmed.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarship@UMMS

https://core.ac.uk/display/56525016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/faculty_pubs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/faculty_pubs?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/70?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/971?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/971?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/31?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/996?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1186/2044-5040-3-28
https://escholarship.umassmed.edu/faculty_pubs/333?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


RESEARCH Open Access

Immortalized myogenic cells from congenital
muscular dystrophy type1A patients recapitulate
aberrant caspase activation in pathogenesis:
a new tool for MDC1A research
Soonsang Yoon1, Guido Stadler2, Mary Lou Beermann1, Eric V Schmidt1, James A Windelborn3, Peter Schneiderat4,
Woodring E Wright2 and Jeffrey Boone Miller1*

Abstract

Background: Congenital muscular dystrophy Type 1A (MDC1A) is a severe, recessive disease of childhood onset
that is caused by mutations in the LAMA2 gene encoding laminin-α2. Studies with both mouse models and primary
cultures of human MDC1A myogenic cells suggest that aberrant activation of cell death is a significant contributor
to pathogenesis in laminin-α2-deficiency.
Methods: To overcome the limited population doublings of primary cultures, we generated immortalized, clonal
lines of human MDC1A myogenic cells via overexpression of both CDK4 and the telomerase catalytic component
(human telomerase reverse transcriptase (hTERT)).

Results: The immortalized MDC1A myogenic cells proliferated indefinitely when cultured at low density in high
serum growth medium, but retained the capacity to form multinucleate myotubes and express muscle-specific pro-
teins when switched to low serum medium. When cultured in the absence of laminin, myotubes formed from immor-
talized MDC1A myoblasts, but not those formed from immortalized healthy or disease control human myoblasts,
showed significantly increased activation of caspase-3. This pattern of aberrant caspase-3 activation in the immortalized
cultures was similar to that found previously in primary MDC1A cultures and laminin-α2-deficient mice.

Conclusions: Immortalized MDC1A myogenic cells provide a new resource for studies of pathogenetic mechanisms
and for screening possible therapeutic approaches in laminin-α2-deficiency.

Keywords: Caspase-3 activation, Congenital muscular dystrophy, Immortalization of myogenic cells, Laminin-α2-deficiency,
Myotube, Telomerase

Background
Congenital muscular dystrophy Type1A (MDC1A) is an
autosomal recessive disease caused by mutations in the
LAMA2 gene that encodes the extracellular protein
laminin-α2 [1]. Mutations that result in complete loss of
laminin-α2 function result in severe neuromuscular
dysfunction, whereas mutations that result in partial loss of
function are associated with less severe disease [2]. In skeletal

muscles, laminin-α2 assembles with laminin-β1 and -γ1
to form laminin-211. Heterotrimeric laminins that include
laminin-α2 have been termed merosins, and MDC1A has
thus also been known as merosin-deficient congenital mus-
cular dystrophy. Laminin-α2 has multiple binding partners
in both the extracellular matrix and on the plasma mem-
brane [3] so that loss of laminin-α2 is accompanied by both
structural deficits and aberrant cell signaling.
Primary cultures of myogenic cells from human MDC1A

patients have proven useful for analyzing molecular mecha-
nisms of MDC1A pathogenesis in skeletal muscle. For
example, myotubes formed in primary cultures of human
MDC1A myoblasts in the absence of exogenous laminin
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show both a several-fold increase in caspase-3 activity
and increased cell death compared to myotubes formed
from healthy control myoblasts [4]. The increased caspase-
3 activity in MDC1A myotubes in vitro appears to re-
capitulate the similarly increased caspase-3 activity seen
in the skeletal muscles of laminin-α2-deficient mice and
human MDC1A patients in vivo [5-9]. Thus, aberrant
activation of caspase enzymatic activity is a cell autono-
mous property of laminin-α2-deficient myotubes. The
aberrant caspase activation and cell death in muscle
cells of MDC1A model systems is mediated by a BAX/
KU70-dependent signaling pathway [4]. Importantly, in-
hibition of aberrant cell death in the skeletal muscles of
laminin-α2-deficient mice leads to a significant amelior-
ation of pathology, including a several-fold increase in
lifespan and improved motor behavior [4,10,11], thereby
demonstrating that aberrantly increased cell death is
both a significant contributor to the overall pathology
and a potential therapeutic target in human MDC1A.
The use of primary cultures of human MDC1A myo-

genic cells to analyze pathogenetic mechanisms has been
constrained both by the small number of donors and by
the limited replication capacity (typically approximately
50 to 60 population doublings) of human myogenic cells
in primary culture. However, the replication limits of
human myogenic cells can be overcome through forced
expression of CDK4 and hTERT [12-14]. Using this tech-
nique, we now report the preparation and analysis of
immortalized, clonal lines of human MDC1A myogenic
cells. We found that the immortalized cells not only
retained the capacity to differentiate into myotubes but
also showed the aberrant activation of caspase activity
as seen in primary cultures. This is the first report of
immortalized human myogenic cells that recapitulate such
a marked pathological change. Thus, these immortalized
MDC1A myogenic cells can provide an essentially unlim-
ited number of cells for study of MDC1A pathogenetic
mechanisms, as well as for the identification and in vitro
validation of therapeutic targets and strategies, including
by high-throughput screening.

Methods
Immortalization and cell cloning
Immortalization of myoblasts and isolation of myogenic
clones was performed as previously described [12-14]. In
brief, mouse CDK4 and hTERT cDNAs were inserted
into pBabe vectors containing neomycin- and hygromycin-
resistance genes, respectively. LoxP sites were included
in the hTERT vector to allow optional excision of the
hTERT expression cassette by Cre recombinase. To
produce retroviral vectors, these plasmids were trans-
fected into the Phoenix ecotropic packaging cell and
the virus-containing supernatant was used to infect the
amphotropic packaging cell line PA317 [15] to obtain

stable virus-producing cell lines after selection with
0.5 mg/mL G418 or hygromycin (EMD Biosciences,
San Diego, CA, USA). Infections were done with 2 μg/mL
polybrene (Sigma-Aldrich). Clonal colonies were grown
from the immortalized population by limiting dilution
culture, and clonally-related cells were analyzed for CD56
expression by flow cytometry and for fusion potential in
differentiation medium. Several independent clonal lines
were isolated from each immortalized population and
expanded for further assays. Telomere length and tel-
omerase activity were assayed as before [13,16].

Human myogenic cells
Table 1 summarizes the human myogenic cells used in
this study. All human cells were obtained from German
or USA biobanks (Table 1 and described below). All
cells were anonymized prior to receipt and no personal
identifications were available to us. The cells had been
produced prior to our study from muscle biopsies
collected under protocols approved by the appropriate
institution that included informed donor consent and
approval to publish results in accordance with stan-
dards of the Helsinki Declaration [17,18]. Because our
studies were of human cells that were obtained from
cell banks and for which personal identification data
were not obtainable by us, the studies were classified
as exempt from Human Studies review by the Boston
University Institutional Review Board in accordance
with USA Department of Health and Human Services policy
(http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.
html#46.101, accessed November, 4, 2013).
Primary MDC1A myoblasts from two different patients,

designated as strains 38/03 and 96/04, were provided by
the Muscle Tissue Culture Collection (MTCC) at the
University of Munich (http://www.baur-institut.de/
forschung/muskelbank/, accessed November 4, 2013)
and were obtained from 4-month-old and 8-month-old
male donors, respectively. Each donor had a clinical
diagnosis of MDC1A with absence of laminin-α2 [4]. As
controls, we analyzed primary myoblasts of a healthy
36-year-old man (unpublished strain 2/08, provided by
the MTCC), as well as myoblasts derived from a biceps
biopsy of a healthy 60-year-old woman, termed 15Vbic
[17,18]. As a disease control, we analyzed myoblasts
derived from a biceps biopsy of a 67-year-old man with
facioscapulohumeral dystrophy (FSHD), termed 15Abic
[16-18]. Primary 15Abic and 15Vbic cells were prepared by
and obtained from the Sen. Paul D. Wellstone Cooperative
Research Center for FSHD (http://www.umassmed.edu/
wellstone/materials.aspx, accessed November 4, 2013) and
immortalization of these 15Abic and 15Vbic cells was
reported previously [16]. Due to the young age of the
MDC1A donor, it was not possible to obtain control
myoblasts from age-matched donors. After immortalization,
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each clonal line was given a new identifier consisting of
the original name followed by ‘-ct’ (for CDK4 + hTERT)
and a clone number. Thus, 38/03-ct4 was the fourth
clonal line derived from CDK4/hTERT immortalized
38/03 cells. Requests for immortalized 38/03-ct4, 96/04-ct8,
and 2/08-ct7 myoblasts (Table 1) should be addressed
to Dr. Peter Schneiderat (Peter.Schneiderat@med.uni-
muenchen.de); and requests for immortalized 15Abic
and 15Vbic myoblasts should be addressed to the
Director of the Wellstone FSHD Center (charles.
emersonjr@umassmed.edu).

Cell culture
Cells were cultured on Lab-Tek Permanox chamber slides
(Nalge Nunc, Rochester, NY, USA) coated with 40 μg/mL
poly-D-Lysine or 1% gelatin. In some cases as noted, slides
were coated at 2 μg/cm2 with human placental laminin
(Sigma-Aldrich cat. #L6274). Proliferating myoblasts were
cultured at subconfluence in a high serum growth medium
and differentiation was induced as cells neared confluence
by switching the cultures to a low serum differentiation
medium as described [17,18]. Where noted, Laminin-111
(Sigma-Aldrich cat. #L2020 or BD Bioscience cat. #354239)
was added to the culture medium at 5 μM. Cells were
cultured under 5% CO2 at ambient oxygen concentra-
tion (normoxia), except, in some cases as noted, when
cells were cultured under a low oxygen atmosphere of
2% O2, 5% CO2, 93% N2 (hypoxia) in gas-tight chambers
as described [19].

Caspase enzyme assays
Caspase enzymatic activity was measured in cell homoge-
nates using either the CaspACE Colorimetric Caspase-3
Activity Assay (50 to 100 μg protein per assay; Promega,
Madison, WI, USA) or the more sensitive luminescence-
based Caspase-Glo 3/7 Assay System (5 μg protein per
assay; Promega) according to the manufacturer’s instruc-
tions and with signal detection on a Safire2 or Infinite
M1000 microplate reader (Tecan, Durham, NC, USA).

Antibodies and immunocytochemistry
Myosin heavy chain isoforms were detected with one of
three antibodies: (1) mouse mAb F59 [20] used at 1:10
dilution of hybridoma supernatant; (2) mouse mAb F20
[21] (used at 1:10; Developmental Studies Hybridoma Bank,
Iowa City, IA, USA), or (3) rabbit anti-MYH3 (Sigma-
Aldrich, St. Louis, MO, USA). Desmin was detected with
mouse mAb D1033 (Sigma-Aldrich) used at 1:100 for 1 h.
Activated caspase-3 antibody was from Cell Signaling
Technologies (Beverly, MA, USA; cat. #9661, used at
1:400); and KU70 antibody was from Novus Biologicals
(Littleton, CO, USA; cat #NB100-1915, used at 1:300).
Dr. Lydia Sorokin (University of Münster) generously
provided the rat anti-laminin-α2 mAb 4H8-2 which
reacts with an epitope within the L4b globular domain
[22]. Cultures were fixed with 4% formaldehyde or 100%
methanol. Primary antibody binding was visualized with
appropriate species-specific secondary antibodies conju-
gated to either Alexa Fluor 488 or Alexa Fluor 594 (Life
Technologies, Grand Island, NY, USA). Slides were
imaged using a Nikon E800 microscope (Melville, NY,
USA) with SPOT Software (version 4.1) and SPOT Insight
camera (Diagnostic Instruments, Sterling Heights, MI, USA).

Results and discussion
Using forced expression of CDK4 and hTERT followed
by cell cloning, we first produced immortalized myo-
genic cell lines from primary human myoblasts obtained
from MDC1A (38/03, 96/04), normal control (2/08,
15Vbic), and FSHD (15Abic) donors (Table 1 and
Figure 1). The FSHD cells served as a disease control to
determine if pathological changes were disease-specific or
shared. Though primary myoblast cultures reached a repli-
cative limit at approximately 50 to 60 cumulative popula-
tion doublings, the immortalized cells proliferated
indefinitely (not shown, compare to [13]). Cells that were
CDK4 plus hTERT immortalized had higher telomerase
enzymatic activity and maintained longer telomeres at
higher population doublings than either primary cells or

Table 1 Primary and CDK4 + hTERT immortalized myogenic cells used in this study

Disease status Donor, age Source Type Name

MDC1A Male, 4 months MTCC Munich Primary 38/03

This work Immortalized 38/03-ct4

MDC1A Male, 8 months MTCC Munich Primary 96/04

This work Immortalized 96/04-ct8

FSHD Male, 67 years Wellstone Primary 15Abic

Ref 16 Immortalized 15Abic-ct24

Healthy control Female, 60 years Wellstone Primary 15Vbic

Ref 16 Immortalized 15Vbic-ct16

Healthy control Male, 36 years MTCC Munich Primary 2/08

This work Immortalized 2/08-ct7
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cells with CDK4 alone (Figure 1A). Culture under low
oxygen conditions (2% O2, 5% CO2, 93% N2) did not
significantly alter proliferation or differentiation of the
immortalized normal, MDC1A, or FSHD lines compared
to culture under normoxic conditions (not shown).
The clonal, immortalized myogenic cells were 100%

positive for expression of the muscle-specific intermedi-
ate filament protein desmin (Figure 1B), whereas primary
cultures were 70% to 95% desmin-positive (not shown), as
was consistent with a small proportion of non-myogenic
cells in the non-clonal primary cultures. Immortalized
MDC1A, FSHD, and normal control myogenic cells all
formed multinucleate myotubes when switched to low
serum differentiation medium, and, as in primary cell
cultures, the percentage of nuclei that were within mul-
tinucleate cells was similar for disease and control cul-
tures (Figure 1C, D, and not shown). We also confirmed
that myotubes formed from immortalized MDC1A
myoblasts failed to express laminin-α2, whereas myo-
tubes formed from immortalized control myoblasts did
express laminin-α2 (Figure 2A, B), thus demonstrating

that the laminin-α2-deficient phenotype was maintained
in the immortalized MDC1A cultures.
We next examined whether immortalized MDC1A

myogenic cells also showed the pathological changes that
we had previously found in primary MDC1A cultures [4].
We first compared KU70 immunostaining patterns in
cultures of immortalized control and MDC1A myogenic
cells. We found that KU70 immunostaining was restricted
to the nuclei of immortalized MDC1A myogenic cells,
whereas both the cytoplasm and nuclei of immortalized
normal control cells showed KU70 staining (Figure 2A, B).
Because primary cultures of MDC1A myogenic cells
also show decreased KU70 expression in the cytoplasm
[4], it is clear that immortalization did not affect this
aberrant property of MDC1A myogenic cells. KU70 is a
multifunctional protein with roles in the nucleus, cyto-
plasm, and perhaps at the cell surface [23]. In the cyto-
plasm, KU70 normally binds to BAX, thereby inhibiting
BAX activation and subsequent cell death [4,24-26].
Loss of KU70 from the cytoplasm would promote BAX
activation and cell death, which is consistent with the

Figure 1 Characterization of immortalized compared to primary myogenic cells. (A) CDK4 + hTERT immortalized cells had higher telomerase
enzymatic activity (left) and maintained longer telomeres (right) than primary cells or cells with CDK4 only. Results from 38/03 MDC1A cells
(telomerase activity by telomeric repeat amplification protocol assay) and healthy control 2/08 cells (telomere length by hybridization assay) are
shown as examples. The cervical carcinoma cell line HeLa served as a positive control. Lanes re-arranged for presentation. PD = population doublings.
(B) 100% of CDK4 + hTERT immortalized cells expressed desmin (green), with MDC1A 96/04-ct8 cells shown as an example. (C) CDK4 + hTERT
immortalized MDC1A myogenic cells showed normal differentiation by fusing into multinucleate cells that expressed myosin heavy chain
(MyHC, red) isoforms. (D) Similar percentages of nuclei were incorporated into multinucleate (≥2 nuclei) myotubes formed from immortalized
healthy control, MDC1A, and FSHD myoblasts. Error bars = SD, n = 5.
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increased cell death phenotype in laminin-α2-deficient
mouse muscles and MDC1A human muscles [5-9].
Our next step was to examine caspase-3 activation in

cultures of immortalized MDC1A vs. immortalized normal
and FSHD myogenic cells. Caspase-3 activation is associ-
ated with activation of the BAX-mediated pathway of cell
death in MDC1A cell cultures [4]. Using immunohisto-
chemistry with an antibody specific for the cleaved, enzy-
matically active form of caspase-3, we found positive
immunostaining in approximately 1% to 3% of the dif-
ferentiated, myosin heavy chain-positive (MyHC) cells
in MDC1A cultures (Figure 3A to D). For example, in
one survey of an MDC1A 38/03-ct4 culture after
4 days of differentiation on gelatin, we found caspase-3
immunostaining in 15 out of 1,084 (1.4%) of the MyHC-
positive cells in the culture. The caspase-3 immunostain-
ing in MDC1A cells appeared to often fill the cytoplasm
and was sometimes also in nuclei as expected for on-
going cell death (Figure 3A to D). In some cases, the
caspase-3-positive cells appeared to be undergoing de-
generation as evidenced by fragmented and/or aggregated
MyHC staining (Figure 3C, D). Furthermore, nuclei in
caspase-3-positive cells were often irregularly shaped,
condensed, or fragmented (Figure 3E), which are signs
of incipient cell death. We did not see such caspase-3-
positive cells with aberrant nuclei in differentiated cul-
tures of immortalized normal or FSHD myogenic cells
(not shown).
The finding that only a small fraction of the differenti-

ated, myosin-expressing cells were positive for caspase-3

at any one time suggests that onset of cell death was
asynchronous in the differentiating MDC1A cultures.
Caspase-3-positive cells typically have a short half-life
(<5 h); eventually detach from the culture dish [4]; and
could possibly be replaced by remaining undifferentiated
myoblasts in the cultures. The mechanism(s) that underlie
the progression of cells from a state in which there are
limited signs of pathology (for example, KU70 reduced
in the cytoplasm) to a state with high level activation of
caspase-3 followed by cell death remain to be deter-
mined in future work.
Finally, to confirm the immunocytochemistry results,

we measured caspase-3 enzymatic activity in differenti-
ated cultures of MDC1A vs. normal and FSHD myogenic
cells. After 4 days of differentiation, cultures of MDC1A
cells had significantly more caspase-3 enzymatic activity
than did cultures of normal control or FSHD cells
(Figure 3F). This approximate four- to six-fold increase
in caspase-3 activity in immortalized MDC1A lines was
similar to the increase we saw previously in primary
MDC1A vs. primary normal cultures [4]. We found simi-
lar results with two different immortalized MDC1A lines
(38/03-ct4 and 96/04-ct8) and with two different caspase-3
enzymatic activity assays. Culture under low oxygen did
not alter the extent of caspase-3 activation (not shown).
The increased caspase-3 activation in the MDC1A cultures
was at least partially laminin-dependent, as growth on
human placental laminin (which includes laminin-211)
or in the presence of mouse laminin-111 was sufficient
to prevent approximately 30% to 50% of the aberrant

Figure 2 Immortalized MDC1A myogenic cells did not express laminin-α2 and showed an altered distribution of KU70. (A) Laminin-α2
(red) appeared in a punctate pattern in multinucleate myotubes (arrows) formed from immortalized healthy control myoblasts. (B) As expected,
no laminin-α2 was found in myotubes (arrows) formed from immortalized MDC1A myoblasts. (C) Immortalized myogenic cells from healthy control
donors showed KU70 (green) both in the cytoplasm (arrows) and in nuclei. (D) KU70 (green) was restricted to nuclei of immortalized MDC1A
myogenic cells.
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increase in caspase-3 (not shown), a result similar to that
we found previously in primary MDC1A cultures [4].
In summary, we have immortalized laminin-α2-deficient

MDC1A myogenic cells and shown that the immortalized
cells not only retain the capacity for differentiation, but
also recapitulate cell autonomous pathological changes
that have been reported in primary MDC1A myogenic
cell cultures, in laminin-α2-deficient mouse muscles,
and in human MDC1A muscles [4-9]. Among these
changes were a reduction in the amount of KU70 in the
cytoplasm and aberrant activation of caspase-3 with
associated abnormalities of nuclear morphology. The

immortalized MDC1A myogenic cells should provide
an essentially unlimited source of laminin-α2-deficient
cells for future studies. In particular, these cells will be
valuable for studies of myogenic cell-autonomous mecha-
nisms in MDC1A pathology, including, for example, aber-
rant induction of cell death and increased autophagy
[4,27]. Combining results from studies of the human
MDC1A myogenic cells with results from studies of
laminin-α2-deficient mice should be particularly useful
for further analyses of disease mechanisms. Pathological
changes that arise due to interactions of human MDC1A
myogenic cells with motor nerve, vascular, inflammatory,
or connective tissue cells could possibly be studied in co-
cultures. Xenotransplant models might also be useful if
the immortalized MDC1A myogenic cells can form a
significant number of innervated myofibers after trans-
plant into immunodeficient mice [14]. Finally, the im-
mortalized MDC1A cells and the pathological changes
in these cells that we have identified should be useful
for developing cell-based screening assays, including
high-throughput screening, as part of pre-clinical studies
to identify therapeutic interventions that reverse MDC1A
pathology.

Conclusions
Immortalized myogenic cells from laminin-α2-deficient
MDC1A patients recapitulate aspects of MDC1A path-
ology including aberrant induction of caspase-3 and KU70
relocalization. The immortalized MDC1A cells provide
a new resource for studies of pathogenetic mechanisms
and for screening possible therapeutic approaches in
laminin-α2-deficiency.
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cells (2/08-ct and 15Vbic-ct16) or immortalized FSHD (15Abic-ct24)
cells. **P <001 (t-test, ‘n’ as shown).
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