45 research outputs found
Recommended from our members
Influence of pH and ionic strength on the color parameters and antioxidant properties of an ethanolic red grape marc extract
The aim of present study was to investigate the influences of pH and several salts on the antioxidant activity and color of an ethanolic grape marc extract. Furthermore, the phenolic content of the extract was analyzed using HPLC and spectrophotometric methods while the total antioxidant activity was assessed by the reaction with ABTS radical. Gallic acid, procyanidins B1, B2, polydatin, catechin, epicatechin, hyperoside, ferulic, chlorogenic, and salicylic acids were among the main identified polyphenols. Different pH values had slight influence on the antioxidant activity, the highest value being determined for pH 3.7. The redness, chroma, and hue were significantly enhanced at pH 3.7 and 2.6. The chromaticity decreased at pH = 5.5 and pH = 7.4, so the extract should be used with care in products with such media. The presence of salts did not noticeably affect the antioxidant activity, except the higher concentrations of CaCl2, which decreased the antioxidant activity but enhanced the color intensity
Comparative nucleotide sequence analysis of growth-rate-regulated gnd alleles from natural isolates of Escherichia coli and from Salmonella typhimurium LT-2.
A comparative study of gnd genes from Escherichia coli strains isolated from natural populations and laboratory strains and from Salmonella typhimurium was undertaken. In the accompanying paper (G. J. Barcak and R. E. Wolf, Jr., J. Bacteriol. 170:365-371, 1988), we showed that the growth-rate-dependent regulation of gnd expression was conserved among four natural E. coli isolates and E. coli B/r in a manner qualitatively similar to that of the gene from E. coli K-12. Here, we report the DNA sequence of the 5' regulatory region and the first 125 codons of the structural gene for the five E. coli gnd genes and the gnd gene from S. typhimurium LT-2. The sequences differed from one another by 5% on the average. All sequences defined putative secondary structures of the mRNA leader, which were previously proposed to be important in the regulation of the K-12 gene. In addition, a sequence between codons 69 and 74, which is highly complementary to the ribosome-binding site of the mRNA, was conserved in all the genes. The sequence data are discussed with respect to potential regulatory consequences
Growth-rate-dependent expression and cloning of gnd alleles from natural isolates of Escherichia coli.
6-Phosphogluconate dehydrogenase (6PGD), encoded by gnd, is highly polymorphic among isolates of Escherichia coli form natural populations. As a means of characterizing the growth-rate-dependent regulation of the level of 6PGD, five gnd alleles, including the E. coli B/r allele, were crossed into E. coli K-12 with bacteriophage P1. In each of the isogenic strains, the level of 6PGD was two- to threefold higher in cells grown on glucose than in cells grown on acetate. The level of enzyme activity in the acetate-grown cells varied about sixfold within the set of isogenic strains. The physiological importance of these differences in enzyme level is discussed. The gnd gene was cloned from five E. coli strains and Salmonella typhimurium LT-2 and mapped with twelve restriction endonucleases. gnd was located and oriented on the chromosomal DNAs. The restriction maps of the genes were aligned at conserved restriction sites, and the relative divergence of the genes was estimated from restriction site polymorphisms. The E. coli gnd genes differed from the S. typhimurium gene by about 11%. Most of the E. coli genes differed from one another by less than 5%, but one allele differed from the others by about 10%. Only the gnd gene from E. coli K-12 had an IS5 element located nearby
Global versus Local Regulatory Roles for Lrp-Related Proteins: Haemophilus influenzae as a Case Study
Lrp (leucine-responsive regulatory protein) plays a global regulatory role in Escherichia coli, affecting expression of dozens of operons. Numerous lrp-related genes have been identified in different bacteria and archaea, including asnC, an E. coli gene that was the first reported member of this family. Pairwise comparisons of amino acid sequences of the corresponding proteins shows an average sequence identity of only 29% for the vast majority of comparisons. By contrast, Lrp-related proteins from enteric bacteria show more than 97% amino acid identity. Is the global regulatory role associated with E. coli Lrp limited to enteric bacteria? To probe this question we investigated LrfB, an Lrp-related protein from Haemophilus influenzae that shares 75% sequence identity with E. coli Lrp (highest sequence identity among 42 sequences compared). A strain of H. influenzae having an lrfB null allele grew at the wild-type growth rate but with a filamentous morphology. A comparison of two-dimensional (2D) electrophoretic patterns of proteins from parent and mutant strains showed only two differences (comparable studies with lrp(+) and lrp E. coli strains by others showed 20 differences). The abundance of LrfB in H. influenzae, estimated by Western blotting experiments, was about 130 dimers per cell (compared to 3,000 dimers per E. coli cell). LrfB expressed in E. coli replaced Lrp as a repressor of the lrp gene but acted only to a limited extent as an activator of the ilvIH operon. Thus, although LrfB resembles Lrp sufficiently to perform some of its functions, its low abundance is consonant with a more local role in regulating but a few genes, a view consistent with the results of the 2D electrophoretic analysis. We speculate that an Lrp having a global regulatory role evolved to help enteric bacteria adapt to their ecological niches and that it is unlikely that Lrp-related proteins in other organisms have a broad regulatory function