139 research outputs found

    TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo

    Get PDF
    TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational power of modern Graphics Processing Unit accelerators

    the influence of nanoscale morphology on the resistivity of cluster assembled nanostructured metallic thin films

    Get PDF
    We have studied in situ the evolution of the electrical resistivity of Fe, Pd, Nb, W and Mo cluster-assembled films during their growth by supersonic cluster beam deposition. We observed resistivity of cluster-assembled films several orders of magnitude larger than the bulk, as well as an increase in resistivity by increasing the film thickness in contrast to what was observed for atom-assembled metallic films. This suggests that the nanoscale morphological features typical of ballistic films growth, such as the minimal cluster?cluster interconnection and the evolution of surface roughness with thickness, are responsible for the observed behaviour

    Poly(methyl methacrylate) - Palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces

    Full text link
    Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on Poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd cluster are implanted in the polymer and form a continuous layer extending for several tens of nanometers beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared to metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.Comment: 11 pages, 3 figure

    Batch fabrication of cluster assembled microarrays for chemical sensing

    Get PDF
    nanomanufacturing and microfabrication parallel processing oxide nanoparticles industrial processesDeposition of clusters from the gas phase is becoming an enabling technology for the production of nanostructured devices. Supersonic clusters beam deposition (SCBD) has been shown as a viable route for the production of nanostructured thin films. By using SCBD and by exploiting aerodynamical effects typical of supersonic beams it is possible to obtain very high deposition rates with a control on neutral cluster mass distribution, allowing the deposition of thin films with tailored nanostructure. Due to high deposition rates, high lateral resolution, low temperature processing, SCBD can be used for the integration of cluster-assembled films on micro- and nanofabricated platforms with limited or no post-growth processing. Here we present the industrial opportunities for batch fabrication of gas sensor microarrays based on transition metal oxide nanoparticles deposited on microfabricated substrates

    Cluster Beam Deposition of Ultrafine Cobalt and Ruthenium Clusters for Efficient and Stable Oxygen Evolution Reaction

    Get PDF
    Ultrafine cobalt and ruthenium clusters are deposited on carbon paper substrates by cluster beam deposition using a matrix assembly cluster source and a pulsed microplasma cluster source, respectively. When used to catalyze the oxygen evolution reaction (OER), the cobalt and ruthenium clusters show electrocatalytic performance superior to the state-of-the-art Ru/C and RuO2 nanoparticle catalysts on both a mass and a specific-surface-area basis. Typically, the cobalt clusters can deliver 10 mA cm–2 at a low overpotential of 320 mV and show a small Tafel slope of 50 mV dec–1 and a mass-based turnover frequency of 0.01 s–1 at an overpotential of 300 mV, outperforming many cobalt-based OER catalysts

    Investigating Disjoint Non-Kekul\ue9 Diradicals with Quantum Monte Carlo: The Tetramethyleneethane Molecule through the Jastrow Antisymmetrized Geminal Power Wave Function

    No full text
    Disjoint non-Kekule molecules are diradicals that present two independent radical centers and can violate Hund's rule, according to which the ground state should have triplet spin symmetry. The prototype of this class of systems is the tetramethyleneethane (TME) molecule for which indeed ion photoelectron spectroscopy (IPS) experiments revealed the singlet (1)A state to be more stable than the triplet B-3(u). In this work we investigate the potential energy curves of the two spin states of TME and of the two anionic states of TME- ((2)A and B-2(1)) as a function of the torsion of the central dihedral angle, with quantum Monte Carlo methods and a Jastrow Antisymmetrized Geminal Power wave function. Through ab initio geometrical optimizations we study the possible structural interconversions between the states, finding results which are in full agreement with the IPS experimental data

    Cluster-assembled nanostructured carbon

    No full text
    • …
    corecore