16 research outputs found

    Analysis of calretinin immunoreactivity in the rat piriform cortex after open field stress during postnatal maturation

    Get PDF
    In our study we used c-Fos protein to identify whether cells containing calretinin (CR) in the rat piriform cortex are engaged in the response to stress stimulation and to find out how this expression changes during maturation (PC). The material consisted of Wistar strain rats of between 0 and 120 days of age divided into 9 groups. Each group consisted of 5 experimental and 3 control rats. Animals from the experimental groups were exposed to the open field test throughout 10 minutes. The control animals were kept in a home cage. In all age-related control rats weak c-Fos immunoreactivity was observed. Our results showed that cells containing c-Fos following an acute open field test were observed predominantly in layers II and III of the PC just after birth. Their number then increased and stabilised on P30. We had already observed immature CR-ir cells at birth. In the 4th week of life these neurons achieved maturity. Their number increased to P90 and decreased in older animals. CR-ir neurons were localised mainly in layer II and to a lesser degree in layers III and I of the PC. Double immunostaining c-Fos/CR revealed that the level of co-localisation was low. Only small differences were observed between the anterior and posterior parts of the PC. In the anterior part a higher number of CR-ir neurons was found. The difference in the level of co-localisation between the anterior and posterior parts was age-related and differentiated. Our results may suggest that during maturation CR-ir neurons of the piriform cortex are not the main population engaged in response to the open field test

    The influence of acute and chronic open-field exposure on the hippocampal formation: an immunohistochemical study

    Get PDF
    The hippocampus plays a role in new learning, memory and emotion and is a component of the neuroanatomical stress circuit. The structure is involved in terminating hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress and attenuates stress responses by shutting off this axis. The immunoreactivity (-ir) of c-Fos, NGF and its receptor TrkA following acute and chronic open-field stress were studied in CA1-CA3 and the DG of the hippocampus. The material consisted of 21 male adult rats divided into three groups: nonstressed (control) animals and rats exposed to acute (15 min once) and chronic (15 min daily for 21 days) aversive stimulation (open-field exposure). The brains were stained with use of immunohistochemical methods for c-Fos, NGF or TrkA. In the animals exposed to acute open-field stress the number of c-Fos-, TrkAand NGF-ir cells was higher in all the structures studied than in the control animals. However they were differentiated only in c-Fos immunoreactivity. In the rats exposed to chronic open-field stress the number of c-Fos-ir cells in the structures of the hippocampal formation studied was smaller than in rats exposed to acute stress and was comparable to that in the control group. No differences were observed between the groups exposed to acute and chronic stress in the number of TrkA-ir cells in the structures under investigation. The number of NGF-ir neurons in CA1 and CA2 was lower after exposure to chronic than after exposure to acute stress but was still higher than that in the control group. Our findings indicate that neurons of CA1-CA3 and the DG are engaged in the stress response after acute as well as chronic open-field exposure. This is probably related to the important role of the hippocampus in processing new spatial information as well as in the habituation processes, although these appear to have different mechanisms

    The immunoreactivity of c-Fos, NGF and its receptor TrkA after open-field exposure in the central and medial nuclei of the rat amygdala

    Get PDF
    The amygdala is a critical component of the neuroanatomical stress circuit. It plays a role in the generation of responses to emotional stimuli. The central (CeA) and medial (MeA) amygdaloid nuclei are implicated in activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. The immunoreactivity (-ir) of c-Fos, NGF and its receptor, TrkA, following acute and chronic open-field stress were studied in the CeA and MeA nuclei of the amygdala. The material consisted of 21 male adult rats divided into three groups: non-stressed (control) animals, rats exposed to acute (once only lasting 15 min) and chronic (15 min daily over 21 days) aversive stimulation (open-field exposure). The brains were stained with the use of immunohistochemical methods for c-Fos, NGF or TrkA. In the control rats c-Fos-, TrkA- and NGF-ir cells were observed in the nuclei studied, but the quantity varied, being moderate or high (immunoreactive to TrkA and NGF) or low (immunoreactive to c-Fos). In the animals exposed to acute open-field stress the number of c-Fos-ir, NGF-ir and TrkA-ir cells in the nuclei under examination was differentiated but higher than that in the control animals. In the animals exposed to chronic open-field stress the number of c-Fos-ir cells in the nuclei studied was similar and was smaller than those in animals exposed to acute stress. The number of TrkA-ir neurons was also lower in comparison to that in animals exposed to acute stress. However, no significant differences in the number of NGF-ir cells were observed between the groups exposed to acute and chronic stress. Diverse expression of c-Fos protein following both acute and chronic stress stimulation may prove the functional heterogeneity of the amygdaloid nuclei investigated. The decrease observed in both c-Fos- and TrkA-ir in MeA (only TrkA in CeA) of animals exposed to chronic stress may indicate the phenomenon of habituation

    Changes in NGF/c-Fos colocalization in specific limbic structures of juvenile and aged rats after open field stimulation

    Get PDF
    Changes in NGF release during stressful events have been associated with the activation of neurons expressing NGF receptors. This study examined the influence of acute stress-induced stimulation on NGF/c-Fos colocalization in the following limbic regions: the paraventricular (PV) nucleus of the hypothalamus, medial (MeA) nucleus of the amygdala, and CA3 hippocampus. Juvenile (P21) and aged rats (P360) were exposed to a 15-minute acute open field (OF) test. Double immunofluorescence staining, used to detect NGF-ir and c-Fos-ir cells, revealed a higher percentage of NGF/c-Fos-ir neurons in the P21 control group than in the P360 control group. Under OF acute stimulation, a statistically significant (p < 0.05) increase of NGF/c-Fos level in CA3 of juvenile animals and in PV and CA3 of the aged rats was observed. These observations indicate that the investigated structures in both age groups show a different response to acute OF stimulation. Acute OF affects the levels of NGF/c-Fos more significantly in aged rats

    Stress-induced changes of interleukin-1&#946; within the limbic system in the rat

    Get PDF
    The aim of this study was to investigate the influence of two periods of life, namely P28 and P360, on the changes in interleukin-1beta (IL-1&#946;) immunoreactivity (-ir) in the hippocampus (CA1, CA3, DG) and amygdala (central-CeA, medial-MeA) caused by acute and repeated open field (OF), or by forced swim (FS) exposition. Rats were divided into groups: non-stressed, exposed to acute (one-time for 15 min) and chronic stressors (21 days for 15 min daily). We found IL-1&#946;-ir in the control group to be higher in P360 than in P28. In P28, under OF and FS exposure, IL-1&#946;-ir in the CeA remained unaltered but increased in the MeA and in the hippocampus after acute and chronic stress. In P360 no changes were observed in the IL-1&#946;-ir level after acute and chronic stimulation. These data demonstrate that only the levels of IL-1&#946;-ir in juvenile rat brains are affected by FS and OF. Additionally, there was no significant difference between FS and OF stimulation in IL-1&#946;-ir

    Synergistic NGF/B27 Gradients Position Synapses Heterogeneously in 3D Micropatterned Neural Cultures

    Get PDF
    Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we present a novel microfluidic based cell culture method that combines 3D micropatterning of hydrogel layers with linear chemical gradient formation. Micropatterned hydrogels were used to encapsulate dissociated cortical neurons in laminar cell layers and neurotrophic factors NGF and B27 were added to influence the formation of synapses. Neurotrophic gradients allowed for the positioning of distinguishable synaptic densities throughout a 3D micropatterned neural culture. NGF and B27 gradients were maintained in the microfluidic device for over two weeks without perfusion pumps by utilizing a refilling procedure. Spatial distribution of synapses was examined with a pre-synaptic marker to determine synaptic densities. From our experiments, we observed that (1) cortical neurons responded only to synergistic NGF/B27 gradients, (2) synaptic density increased proportionally to synergistic NGF/B27 gradients; (3) homogeneous distribution of B27 disturbed cortical neurons in sensing NGF gradients and (4) the cell layer position significantly impacted spatial distribution of synapses

    Role of brain-derived neurotrophic factor in shaping the behavioural response to environmental stressors

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is an important neurotrophin involved in an integration of the brain activity in physiological and pathological conditions, with formation of a short- and long-term functional and structural neuroplasticity. This process proceeds, with a changeable dynamics, in the subsequent stages of ontogenesis. In addition to many other functions in the central nervous system, BDNF is also involved in shaping a response to stress stimuli in the form of precisely adjusted behavioural reactions involving the limbic system, and the endocrine system with stimulation of the hypothalamic-pituitary-adrenal axis (HPA). Although almost every stressor increases the activity of the HPA, the neuronal response to it can vary substantially. This may be due to involvement of different neurotransmitter pathways, neuromodulators and neurohormones, as well as changes in gene expression. It is widely accepted that BDNF synthesis and secretion are modulated by stress. Furthermore, age is an important factor influencing the BDNF expression in response to different stressors. In this work, we focused on the analysis of the role of mild stressful stimuli, which commonly occur in the natural environment, on changes in BDNF expression at various stages of ontogenetic development. Although, the presented data comes from animal studies, probably similar mechanisms of stress regulation are also present in humans. This comprehensive review shows that the influence of stressors on the BDNF expression depends on many factors, including a type and duration of a stressor, time of neurotrophin detection, animal’s resistance to stress, brain area, and genotypic characteristics of an individual. A more detailed understanding of the mechanisms shaping stress reactions, including the role of BDNF, may be of both theoretical and practical importance, allowing designing more effective strategies for preventing and treating stress itself and the stress-related disorders

    Changes in NGF/c-Fos colocalization in specific limbic structures of juvenile and aged rats after open field stimulation

    No full text
    Changes in NGF release during stressful events have been associated with the activation of neurons expressing NGF receptors. This study examined the influence of acute stress-induced stimulation on NGF/c-Fos colocalization in the following limbic regions: the paraventricular (PV) nucleus of the hypothalamus, medial (MeA) nucleus of the amygdala, and CA3 hippocampus. Juvenile (P21) and aged rats (P360) were exposed to a 15-minute acute open field (OF) test. Double immunofluorescence staining, used to detect NGF-ir and c-Fos-ir cells, revealed a higher percentage of NGF/c-Fos-ir neurons in the P21 control group than in the P360 control group. Under OF acute stimulation, a statistically significant (p &lt; 0.05) increase of NGF/c-Fos level in CA3 of juvenile animals and in PV and CA3 of the aged rats was observed. These observations indicate that the investigated structures in both age groups show a different response to acute OF stimulation. Acute OF affects the levels of NGF/c-Fos more significantly in aged rats

    Stress-induced changes of interleukin-1beta within the limbic system in the rat

    No full text
    The aim of this study was to investigate the influence of two periods of life, namely P28 and P360, on the changes in interleukin-1beta (IL-1beta) immunoreactivity (-ir) in the hippocampus (CA1, CA3, DG) and amygdala (central-CeA, medial-MeA) caused by acute and repeated open field (OF), or by forced swim (FS) exposition. Rats were divided into groups: non-stressed, exposed to acute (one-time for 15 min) and chronic stressors (21 days for 15 min daily). We found IL-1beta-ir in the control group to be higher in P360 than in P28. In P28, under OF and FS exposure, IL-1beta-ir in the CeA remained unaltered but increased in the MeA and in the hippocampus after acute and chronic stress. In P360 no changes were observed in the IL-1beta-ir level after acute and chronic stimulation. These data demonstrate that only the levels of IL-1beta-ir in juvenile rat brains are affected by FS and OF. Additionally, there was no significant difference between FS and OF stimulation in IL-1beta-ir
    corecore