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Brain-derived neurotrophic factor (BDNF) is an important neurotrophin involved 
in an integration of the brain activity in physiological and pathological conditions, 
with formation of a short- and long-term functional and structural neuroplasticity. 
This process proceeds, with a changeable dynamics, in the subsequent stages of 
ontogenesis. In addition to many other functions in the central nervous system, 
BDNF is also involved in shaping a response to stress stimuli in the form of precisely 
adjusted behavioural reactions involving the limbic system, and the endocrine 
system with stimulation of the hypothalamic-pituitary-adrenal axis (HPA). Although 
almost every stressor increases the activity of the HPA, the neuronal response to it 
can vary substantially. This may be due to involvement of different neurotransmit-
ter pathways, neuromodulators and neurohormones, as well as changes in gene 
expression. It is widely accepted that BDNF synthesis and secretion are modulated 
by stress. Furthermore, age is an important factor influencing the BDNF expression 
in response to different stressors. In this work, we focused on the analysis of the 
role of mild stressful stimuli, which commonly occur in the natural environment, 
on changes in BDNF expression at various stages of ontogenetic development. 
Although, the presented data comes from animal studies, probably similar mech-
anisms of stress regulation are also present in humans.
This comprehensive review shows that the influence of stressors on the BDNF 
expression depends on many factors, including a type and duration of a stressor, 
time of neurotrophin detection, animal’s resistance to stress, brain area, and 
genotypic characteristics of an individual. A more detailed understanding of the 
mechanisms shaping stress reactions, including the role of BDNF, may be of both 
theoretical and practical importance, allowing designing more effective strategies 
for preventing and treating stress itself and the stress-related disorders. (Folia 
Morphol 2021; 80, 3: 487–504)
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INTRODUCTION
Animal behaviour is a result of a coordinated ac-

tion of functional systems within the central nervous 
system (CNS). The behaviour is a consequence of  
a reaction to external stimuli of different modali-
ties, as well as the effect of a response to constantly 
changing parameters of internal environment in the 
organism. Finally, it is a consequence of elaborated 
reactions resulting from the conscious integration of 
stimuli in the brain cortical areas, reflexes, and instinc-
tive or emotional reactions arising in subcortical struc-
tures of the brain. Stress stimuli of various natures, 
constantly affecting the body, play an important role 
in shaping the behaviour. Therefore, answering to 
these stimuli is an integral part of functioning in the 
natural environment. The reaction to stressful stimuli 
requires involvement and activation of many systems. 
In addition to the sensory and motor systems, they in-
clude the vegetative, endocrine and limbic systems, as 
well as various neurotransmitters, neuromodulators 
and signalling pathways, leading to changes in ex-
pression of transcription factors and gene activation. 
It is worth noting that the reaction to stressful stimuli 
is plastic and depends on interaction of numerous ex-
ternal and internal factors. It also changes its charac-
teristics along ontogenetic development. One of the 
important factors shaping the response to stressful 
stimuli is brain-derived neurotrophic factor (BDNF). 
Despite systematic research, the role of this factor 
in shaping responses to different types of stressors 
at various stages of ontogenetic development is not 
fully elucidated. In research on the role of this factor 
many experimental models have been introduced to 
approximate the conditions of the stressors’ action in 
the natural environment. This review summarises the 
current knowledge on the role of BDNF in stress at 
various stages of ontogenesis. A brief overview of the 
most commonly used tests to assess the expression of 
BDNF in response to stress stimuli is also presented.

STRESS REACTION MECHANISMS 
INTEGRATE FUNCTIONS  

OF THE ENDOCRINE, LIMBIC  
AND AUTONOMIC SYSTEMS 

One of the most important functions of the nerv-
ous system is perception and transfer of information 
from both external and internal environment to the 
complex functional systems of the brain. This enables 
integration of stimuli and maintenance of physiological 
homeostasis, as well as elaboration of an adequate 

behavioural response. One of the most important 
systems involved in these processes is the hypotha-
lamic-pituitary-adrenal axis (HPA) [67, 112, 157, 162]. 
Hypothalamus enables transfer and integration of neu-
rogenic signals to the endocrine, limbic and autonomic 
systems. Within hypothalamus, the paraventricular 
nucleus (PVN) and, to a lesser extent, the supraoptic 
nucleus (SON) are the two areas involved in the stress 
response initiation [26, 169] and shaping this reaction, 
depending on the stressors’ specificity [52, 105].

Taking into account the anatomical aspects related to 
the stimuli transfer between different functional systems 
in the brain, it can be suggested that influence of stress-
ors on the HPA occurs in two ways: direct and indirect. 
The first one is used by physical stressors activating HPA 
directly [42, 67]. The second one is used by emotional 
stressors, influencing the HPA through activation of im-
portant structures of the limbic system, such as amygdala 
and hippocampus [23, 55, 130]. Activation of hypo-
thalamus results in a rapid secretion of corticotrophin 
releasing hormone (CRH) — from the small cellular part 
of the PVN, and arginine-vasopressin (AVP) — from the 
large cellular part of this nucleus and from the supraoptic 
nucleus (SON). It is followed by a release of the adrenocor-
ticotropic hormone (ACTH) from the pituitary gland [15, 
108] and, ultimately, glucocorticoids or corticosterone 
from the adrenal cortex [69, 112]. Glucocorticoids, due 
to the negative feedback, influence hypothalamus and 
pituitary gland and inhibit the production of CRH and 
ACTH, respectively. This, in turn, results in reduction the 
HPA activity [68]. Despite the adaptive action of gluco-
corticoids in the short term, their long-term action lowers 
the body’s ability to cope with stress and may affect the 
synaptic plasticity [100, 102]. 

INTERACTION OF GLUCOCORTICOIDS, 
NEUROTRANSMITTERS, AND  

BDNF IS NECESSARY TO ELABORATE 
THE STRESS REACTION

Stress may evoke changes in BDNF expression 
through signalling pathways triggered by glucocor-
ticosteroids (glucocorticoids) [48, 86]. Barbany and 
Persson [16] reported that excessively high or low 
levels of glucocorticoids may alter the BDNF expres-
sion. It has been suggested that BDNF may reduce 
some of the negative effects of glucocorticoids [90] 
and its direct administration is able to restore the 
stress-reduced content of this neurotrophin, e.g. in 
the hippocampus [27, 82]. However, the results of 
these studies are inconclusive and not commonly ac-
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cepted [63]. The interaction between glucocorticoids 
and BDNF can occur, among others, through their 
influence on expression of the TrkB receptor [72]. The 
studies conducted in animals with adrenalectomy 
(removal of adrenal glands) indicated that glucocor-
ticoids negatively affected the BDNF expression in 
hippocampus and other cortical areas [71, 119, 150, 
151]. However, adrenalectomy does not completely 
block the effects of stress on the BDNF concentra-
tion [151]. There is evidence that other factors, such 
as interleukin-1b, also contribute to the changes in 
the BDNF expression in hippocampus [17]. Also the 
animal activity is an important factor regulating the 
BDNF production in the rat hypothalamus [97]. The 
regulation involves classical neurotransmitters, such 
as glutamate, acetylcholine, serotonin and GABA [65, 
76, 96]. It has been suggested that whereas gluta-
mate, acetylcholine and serotonin increase the BDNF 
expression, GABA reduces its content in the CNS.

BDNF CONTRIBUTES TO MODIFICATION 
OF THE HPA ACTIVITY IN STRESS  

CONDITIONS
The role of stress as modulator of BDNF synthesis 

and release is well documented [108, 109]. The long-
term stress affects the expression of genes responsible 
for signalling pathways related to glucocorticoids 
and neurotrophins, among them also BDNF [51, 54, 
114, 159, 178]. Transcription of BDNF is under con-
trol of promoters which react differently to endog-
enous and exogenous stimuli (e.g. glucocorticoids 
and environmental factors, respectively) [80]. These 
stimuli are also responsible for triggering epigenetic 
modifications [155]. It is believed that epigenetic 
processes cause long-lasting or permanent changes 
in BDNF gene expression, which is reflected in the 
behavioural responses occurring during early devel-
opment [130, 168]. Methylation of the BDNF gene is 
an important epigenetic process affecting its expres-
sion, thus inducing changes in the protein content 
initiated by stress. However, the consequences of 
this modification are differently interpreted by some 
authors [114]. The reason for this could be epigenetic 
changes at different loci within the same gene [91]. 
Additionally, there is evidence showing that changes 
in BDNF expression were also related with age [91]. 
It has been suggested that epigenetic modification 
of BDNF gene may be responsible for an occurrence 
of some pathologies induced by chronic stress, such 
as mental disorders or cognitive decline [167, 177]. 

Animal studies showed that chronic social stress in 
mice reduced BDNF expression in the hippocampus 
as a result of methylation within its gene [156]. 

Brain-derived neurotrophic factor plays an im-
portant role in integrating neuronal and endocrine 
responses to different stressors [140]. This is due to 
the direct influence of this neurotrophin on the HPA 
[73, 154]. Studies showed that both endogenous 
(already existing pool) and de novo synthesised BDNF 
regulated the HPA functioning and elaboration of an 
adaptive stress response [108]. It has been shown 
that a single injection of BDNF causes activation of 
the HPA [58]. Importantly, by modifying the HPA ac-
tivity, BDNF facilitates adaptation to environmental 
conditions [140] and contributes to the maintenance 
of the physiological homeostasis [154]. By counter-
acting the adverse effects of glucocorticoids, BDNF 
is an important factor reducing the stress-induced 
psychosocial and psychological symptoms [90]. As 
mentioned before, the BDNF function in response to 
stressors relays on regulation of synthesis and release 
of hormones and neuropeptides, such as CRH and AVP 
in PVN and SON [4, 58, 97, 119]. The stress-induced 
increase in the BDNF concentration stimulates AVP 
and CRH synthesis [58, 97, 119]. It may also affect the 
intracellular content of neuropeptides [58].

REGULATORY ROLE OF BDNF IN 
SHAPING THE BEHAVIOURAL RESPONSE 
IS DETERMINED BY NEURONAL ACTIVITY  

AND FUNCTION, AS WELL AS STAGE  
OF ONTOGENETIC DEVELOPMENT

Brain-derived neurotrophic factor has important 
regulatory functions in neurons within the CNS, re-
gardless of the stage of ontogenetic development 
[154]. The role of this neurotrophin is related to the 
activity of neural networks and synaptic plasticity, 
and it can differ depending on the stage of ontogen-
esis [58, 60, 90, 93, 146]. Neural activity affects the 
BDNF gene transcription, as well as synthesis of the 
BDNF protein. It also determines an expression of TrkB 
receptor, which is one of the most important signal 
transducers of this neurotrophin [61].

In the earliest stage of ontogenetic development, 
BDNF is involved in differentiation of neural stem cells 
into neurons, their growth and maturation [31, 175]. 
This is a consequence of BDNF regulatory function 
upon cell proliferation and migration, neuronal sur-
vival, as well as maturation of the axodendritic system 
and synaptogenesis [123, 175].



490

Folia Morphol., 2021, Vol. 80, No. 3

In the mature brain, BDNF regulates synap-
tic transmission [160] and has a protective func-
tion upon neurons [7, 89]. Consequently, BDNF has  
a role in promoting learning, cognitive and memory 
skills, as well as reduction of anxiety [37, 38]. During 
aging, BDNF is responsible for preventing neuronal 
degeneration, as well as for an enhancement of the 
regenerative and repair processes [98, 145, 154]. In 
many brain areas, including limbic structures such 
as hippocampus, amygdala and the hypothalamic 
nuclei, BDNF has been suggested to modulate the 
behavioural responses to stress [109, 116, 119]. How-
ever, its role in this process differs depending on the 
stage of development and brain area [93].

The variety of BDNF functions in the CNS suggests 
that alterations in the expression of this neurotrophic 
factor could be involved in the pathophysiology of the 
stress-related behaviours caused by long-term effects 
of stressful stimuli, such as orientation, memory and 
cognition disturbances and mental illnesses, such as 
depression, Parkinson’s, Alzheimer’s and Hunting-
ton’s diseases [5, 104, 114]. Therefore, BDNF could be 
considered in future research on therapeutic agents 
aimed at treatment of several stress-related disorders. 

CHANGES IN BDNF EXPRESSION 
DURING ONTOGENESIS AFFECT  

STRESS REACTIONS
Stimulation of the CNS with a mild stress evokes 

multidirectional effects. One of the ways in which 
this modification occurs is through activation of the 
HPA and its relationship with BDNF. This is indirectly 
related to involvement of BDNF in development of 
synaptic plasticity [58, 60, 79]. The intensity of this 
process varies during different stages of ontogenesis, 
which can be a consequence of changes in BDNF 
concentration [58, 108]. Following, we briefly discuss 
the CNS effects induced by the selected mild stressors 
(i.e. causing neither structural damage nor pain) often 
present in the animal’s natural environment.

Early development

An early developmental stage, in rodents lasting 
approximately 2 weeks after birth, is called a stress 
hypo-responsive period (SHRP) [87, 132, 137]. During 
this time, activation of the HPA and a complete devel-
opment of the stress response occur only after action 
of very strong psychological or physical stimuli [43, 
139]. One can suspect that attenuation of the stress 
response during that time may protect the developing 

brain from negative effects of stress hormones (e.g. 
glucocorticoids) [132]. The high threshold of the HPA 
activation could be a consequence of the incomplete 
development of structures which control the stress 
response, one of which is PVN [125, 128]. It is also 
associated with a less efficient cooperation of the 
structures controlling the HPA [44]. 

Stress in the early period of life negatively affects 
development and functioning of the brain. It may 
be responsible for inducing anxiety, depression, and 
aggression also persisting later in life [2, 29, 70, 166]. 
However, in general, connection of stress occurring 
in the early life with psychopathological symptoms 
observed in adulthood is poorly understood and re-
quires further research [167]. 

Maternal separation and social isolation. Ma-
ternal separation (MS) and social isolation (SI) are 
regarded as the most common causes of stress in the 
early life. Early periodic postpartum MS, as well as 
siblings SI are examples of stress that can cause distur-
bances in the HPA activity resulting in structural and 
functional impairments in later life [122, 126, 174, 
177]. These two forms of stress in the early life also 
affect the BDNF mRNA and protein levels. The long-
-term MS-induced changes in the BDNF expression 
level in the hippocampus [21, 41] have been linked 
to learning and memory disorders [2, 30, 70, 174]. 
Ohta Ken-ichi et al. [111] showed that a long-term 
separation (6-h) from a mother, between postnatal 
day P2 and P20, reduced the expression of the BDNF 
genes in hippocampus of the Sprague-Dawley rats 
at P7. However, it had no effect on BDNF-ERK sig-
nalling after P14. MS between P2 and P14 induced  
a transient increase in the BDNF levels in hippocam-
pus, prefrontal cortex [126], and amygdala of the 
Wistar rats [34]. Other studies showed that an early 
weaning (during the first week of life) had no effect 
on the BDNF levels in hippocampus [179]. BDNF in-
crease was observed in the olfactory bulb, where 
this neurotrophic factor may play an important role 
in learning of the olfactory association [179]. The 
results confirm that stress sensitivity is lower and the 
HPA axis response is decreased in the early postnatal 
period [87, 132]. They also suggest that period of 
hyporesponsiveness to stress and duration of the 
postpartum MS may be important factors inducing 
changes in the BDNF expression in the various brain 
regions. It has been assumed that BDNF plays an 
important role in neuroprotection [92]. Hence, an 
increase of its expression could counteract the effects 
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of MS. However, there are data indicating that MS 
induced a decrease in the BDNF expression within 
3 weeks after birth [33]. This stressor also induced 
a reduction in the BDNF mRNA in P16, followed by 
an increase in P30 and P60 in hippocampus [83] 
and in the medial prefrontal cortex (mPFC) of Wistar 
rats [174]. A long-term MS induces reduction in the 
number of dendritic spines and delay in maturation of 
the pyramidal neurons in hippocampus [111]. Thus, 
the MS may influence the BDNF-associated signal-
ling during synaptogenesis [111]. These processes 
and an increased apoptosis coexist in the early post-
natal period [29]. These observations indicate that 
the MS-induced abnormalities in hippocampus are 
associated with disturbances in the BDNF signalling 
pathway during the early brain development [111]. 
Studies showed that the burden of MS in rodents 
was responsible for changes in BDNF expression in 
adulthood and aging, often leading to emotional 
and cognitive disturbances [122]. Hence, MS causes a 
decrease in the BDNF concentration, which may lay at 
the basis of some characteristic functional disorders. 
A potential factor contributing to these processes are 
epigenetic changes in the BDNF gene, which may 
increase susceptibility to stress later in life [141]. 

In adult and older rodents, the long-term MS 
also resulted in reduction of BDNF expression in hip-
pocampus [2, 45, 94, 152]. Furthermore, in adult 
rats, a decrease in BDNF was observed in amygdala 
[124] and prefrontal cortex [126]. However, in adult 
rats additionally subjected to prolonged swimming 
stress, no further reduction in BDNF expression in the 
prefrontal cortex was reported [126]. It is possible 
that a decrease in BDNF expression in the CNS early 
in life can result in an impairment of the plasticity 
mechanisms later on. 

The results of studies investigating changes in 
BDNF expression after MS are not equivocal. Récam-
ier-Carballo et al. [122] observed an increase in BDNF 
concentration in hippocampus and amygdala and  
a decrease in the frontal cortex in adult mice after the 
long-term MS. Study by Greisen et al. [62] showed 
an increase in BDNF concentration in hippocampus 
in adult rats subjected previously to MS in their early 
life, although they found no changes in the frontal 
cortex and PVN. On the contrary, van Zyl et al. [164] 
showed no effect of MS and a restraint stress on 
BDNF content in hippocampus of adult rats. These 
differences could be explained by the selection of 
various species and strains of experimental animals, 

differences in the experimental conditions and pro-
tocols concerning for example the time-point of the 
expression measurement of the neurotrophic factor.

Thus, various changes in BDNF expression were 
demonstrated in different brain areas, both in an-
imals after MS and those subjected to additional 
stress in adulthood. This suggests the complexity of 
the regulatory mechanisms. The increase in BDNF 
expression in hippocampus of rats after MS could 
be a compensatory response to neonatal separation, 
keeping neurogenesis unchanged in adult animals. 
Reports on the SI effects on the CNS and especially 
their pathophysiological consequences are not equiv-
ocal. Biggio et al. [21] have shown that both 3 h MS 
between P3 and P14 and SI after weaning induce  
a significant reduction in BDNF expression in hippocam-
pus of Sprague-Dawley rats. Despite the opinion that 
early SI exacerbates responses to stressors [167], its  
effects in adulthood are poorly understood. 

Maturation

The maturation (from P14 to P90) is a phase of  
a rapid structural and functional changes relaying on 
an intense development and reorganization of brain 
structures, including final shaping of their connec-
tions. In this phase, the structures involved in the 
stress response undergo further development. During 
this period, they are more sensitive to aversive stim-
uli then in the adulthood [99, 106]. In adolescence,  
a response of the HPA to stressors is increased and 
prolonged [9, 93, 107]. This results in an increased 
concentration of glucocorticoids and a prolonged time 
of their secretion after a repeated exposure to a stress-
or [99, 165]. It may be a consequence of the incom-
plete development of the HPA feedback inhibition [59, 
93]. According to some authors, this can explain the 
insufficient control of its activity [9, 93, 99]. Numer-
ous studies have shown that exposure to potentially 
traumatic stressors in adolescence has a significant 
impact on the further development of brain structures 
and formation of their connections [9, 36, 158]. In 
development, stress triggers processes resulting in 
permanent changes in the neuronal plasticity and 
efficiency of the synaptic connections, which require 
the BDNF activity [18, 63]. Many authors emphasize 
that changes of environmental conditions influenc-
ing sexually immature animals, with not completely 
formed neuroendocrine regulatory mechanisms and 
neuronal connections, may lead to the long-term 
physiological and behavioural dysfunctions [24, 66]. 
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Predator odour and social isolation. The preda-
tor smell is a strong, unconditional and psychogenic 
stressor for the rodents [18, 153, 180]. Animals ex-
posed to this stressor demonstrate changes in activ-
ity, long-lasting and augmented anxiety behaviour 
[153, 180]. They are accompanied by an increased 
level of glucocorticoid release and an altered BDNF 
concentration [18]. The nature of the response to 
a predator’s threat early in life is a species-specific 
feature. It is often associated with development of 
defensive behaviour and sensitivity to stress during 
later development [18, 153, 180].

Bazak et al. [18] assessed BDNF expression in the 
frontal associative cortex, CA1, CA3 sectors of hip-
pocampus and the dentate gyrus (DG), after a single 
(10 min) and multiple exposures to a predator urine 
scent in the Sprague-Dawley rats at P24. The exper-
iment was repeated at P60. It was found that both 
the early and late effects of the stressor induced  
a significant reduction in the BDNF mRNA and BDNF 
protein levels in the hippocampal CA1. The effect of 
re-exposure to stress was greater in rats exposed to 
the same stressor again, indicating a cumulative effect 
of this kind of stimulus.

Exposure to a chronic psychosocial stress may 
also alter the BDNF expression. A long-term SI caused 
changes in functioning of the HPA and an increase of 
anxiety and depressive behaviours [177]. They were 
accompanied by a reduction of the BDNF mRNA and 
BDNF protein concentration in hippocampus of the 
adolescent rodents. This suggests an important role 
of this type of stressor in the regulation of the BDNF 
content in the limbic system and, thus, in shaping 
the adequate behavioural responses during further 
stages of ontogenesis. However, consequences of 
these processes for the synaptic plasticity and the 
brain structure in the adulthood remain unknown.

Chronic mild stress. Several procedures can 
induce mild forms of stress. Among the most fre-
quently used are: temporary deprivation of food or 
water, overcrowding in a cage, social isolation, using 
a soaked sawdust in a cage or tilting frames (45°), 
inversion of the light/dark cycle, and a short-term 
(5 min) forced swimming test [155]. These stress-
ors applied in the Spraque-Dawley rats resulted in 
a reduction of BDNF mRNA in hippocampus and an 
induction of morphological and functional changes 
in the spino-dendritic system [155]. A decrease in 
the BDNF mRNA expression in hippocampus was also 
reported after application of a chronic, unpredictable, 

mild stress, in form of the open field test, for 8 to 
28 days, in 2-month-old Spraque-Dawley rats [142]. 
These results confirm the possibility of using many 
types of mild stressors in modelling responses to 
harmless stimuli present in the natural environment 
of rodents. This gives the possibility of their use in 
studies on behavioural responses in animals at dif-
ferent ages and under influence of stimuli of various 
nature and duration.

Immobilisation. An immobilisation stress (IM) 
induces the BDNF expression [95]. It is responsible 
for the structural plasticity changes in hippocampus 
and amygdala, i.e. areas involved in development 
of cognitive and affective symptoms of stress [136]. 
The effects of an acute and chronic immobilisation 
stress on the level of BDNF expression were observed 
in the 8-week-old Wistar rats [84]. A day following 
2 h immobilisation, the BDNF level increased in neu-
rons of the basolateral amygdala (BLA), although it 
did not change in the CA3 sector of hippocampus. 
However, after a long-term (8 h) immobilisation, the 
BDNF level increased in the BLA and decreased in CA3. 
Additionally, the BLA neurons hypertrophy and the 
hippocampal CA3 neuronal atrophy were observed. In 
line with these results, Ueyama et al. [161] reported 
a reduction of the BDNF mRNA level after 8 h immo-
bilisation stress in hippocampus of the 6-week-old 
male Wistar rats. 

Forced swimming. A forced swimming (FS) stress 
is a type of stimulus experienced by rats in their 
natural environment [40]. Chronic FS combines psy-
chological stimuli of novelty and an aquatic envi-
ronment with a physical stimulus in the form of the 
forced motor activity [42]. In the 2-month-old juvenile 
Sprague-Dawley rats, a short-term (10 min) FS test in 
cold water caused a rapid increase in the BDNF mRNA 
and BDNF protein concentration in hippocampus, 
already 15 min after the end of stimulation. However, 
after chronic FS (10 min/21 days in 25°C water), the 
BDNF mRNA and protein expression in hippocampus 
decreased after 60 min from its termination [143]. 
Badowska-Szalewska et al. [13] assessed the effects 
of the long-term FS (15 min/21 days in 22°C water) on 
the density of BDNF-containing neurons in the pyram-
idal layer of the hippocampal CA1, CA3 sectors and 
the granular neurons of DG, as well as in SON and PVN 
nuclei of the hypothalamus, in juvenile (P28) and mid-
dle-aged (P360) Wistar rats [13, 53]. They reported  
a decrease in the density of the BDNF-ir neurons in 
CA1 and DG and in the nuclei of the hypothalamus. 
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It was concluded that the type of the stressor deter-
mined the changes in number of the BDNF-ir cells 
in juvenile rats. The different density of BDNF-ir in 
juvenile versus middle-aged rats can be explained by 
age-related changes in the demand for BDNF [13, 
53]. Exposure to a mild long-term stress early in life 
is believed to attenuate the HPA inhibition, which 
may lead to an increase in the glucocorticoid levels 
[74, 99], as well as to a decrease in BDNF expression. 
Importantly, this may result in an impairment of the 
neuroplasticity and of the normal brain development 
at subsequent stages of ontogenesis. Consequently, 
this may also initiate formation of improper behav-
ioural reactions during subsequent life periods.

High light-open field stress. The high light-open 
field (HL-OF) test reflects conditions in which the rats 
actively explore a new environment [46, 53]. The aver-
sive stimulus in the form of a bright light can trigger 
emotional reactions and anxiety behaviours [64, 118]. 
However, a chronic exposure to HL-OF (15 min/21 day 
cycle), changed the density of the BDNF-ir neurons 
neither in the large-cell (PVm) and small-cell (PVp) 
part of the PVN, nor in the SON of the hypothalamus, 
in the Wistar rats in P28 [53]. This can be explained 
by an adaptation to the particular types of stressors 
[46]. According to some authors, it may be the result 
of the BDNF-dependent plasticity within particular 
brain structures, and it suggests a protective role of 
BDNF in the neurons of these areas [146].

Adulthood

Reaching a complete morphological and func-
tional maturity the animal’s activity and behaviour 
becomes characteristic for the adult representatives of 
particular species. This is related to the intensification 
of its interaction with the surrounding environment 
and, thus, an increased susceptibility to the stressful 
stimuli. As a result, in stress studies on adult animals 
a wide range of tests approximating the impact of 
stressors occurring in the natural environment is used 
[4, 6, 58, 108, 119]. Adulthood is characterised by 
the HPA functional efficiency [6, 58]. Most of studies 
investigating the role of BDNF in hypothalamus and/ 
/or other structures involved in the HPA regulation 
in response to stress are performed in the adult rats. 

It is worth mentioning that neurogenesis in the 
adult brain occurs in two main areas, the subventricu-
lar zone of the lateral ventricles and the subgranular 
zone of the dentate gyrus of the hippocampus [39]. 
Especially the latter area of proliferation is important 

for the proper shaping of processes related to spatial 
and contextual memory of stress-related events and 
reactions [49, 50, 101]. The effect of stressful stim-
uli is related to the reduction of neurogenesis and, 
consequently, it is also associated with a decrease 
in BDNF expression [47]. A further consequence of 
these processes is the disturbance of structural and 
functional plasticity in the hippocampus.

Restraint and immobilisation. Restraint and 
immobilisation stresses (RS and IM, respectively) 
combine the effects of psychological and physical 
stimuli [32, 147]. This combination of stressors occurs 
sporadically in the natural environment of rats. As 
expected, a complete immobilisation of an animal is 
more aversive than restricting its movements. Most 
studies on the effect of such stimulation on BDNF 
expression were focused on hippocampus. However, 
the results of studies investigating the BDNF mRNA 
and its protein level after stimulation by the acute or 
chronic RS or IM are unequivocal and inconclusive. 
Both acute (6 h) RS and chronic RS (lasting from  
1 to 3 weeks) induced a marked reduction in the BDNF 
mRNA levels in hippocampus of the Sprague-Dawley 
rats [107] and C57BL/6J mice, and BALB/cJ mice [3]. 
Similarly, a decrease in BDNF level in the hippocampal 
pyramidal cell layer and in the granular layer of the 
DG was reported after 1 day in the 4 h/3days RS rat 
model [172]. In line with the previous results, Xu et 
al. [171] observed a decrease in BDNF expression and 
the neuronal proliferation in hippocampus after long-
term (6 h/14 days) RS. Other authors showed that 
although the chronic RS leads to decrease in BDNF 
and the BDNF mRNA expression in the hippocampal 
CA3, it could initiate its increase in the BLA [19].  
A significant decrease in the BDNF level after a single 
3 h RS was also observed in the prefrontal cortex 
(PFC) of the Wistar rats [120]. However, Naert et al. 
[108] showed an increase in BDNF levels after chron-
ic RS (3 h/21 days), not only in the hippocampus 
but also in the hypothalamus and pituitary gland 
in the Sprague-Dawley rats. Interestingly, there are 
also reports stating that an acute (3 h) and chronic  
(6 h/14 days) RS did not induce any changes in the 
BDNF mRNA levels or BDNF protein concentration in 
hippocampus and amygdala [121, 127]. 

Immobilisation for 2 h caused a decrease in 
the level of BDNF mRNA in hippocampus in the 
Sprague-Dawley rats, immediately after the end of 
the experiment [176]. Chronic IM reduced the BDNF 
levels and BDNF immunoreactivity in the hippocampal 
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pyramidal neurons, as well as in the DG granular neu-
rons, in the Sprague-Dawley rats [173]. A comparison 
of the effect of 7-day vs. 21-day IM on the BDNF level 
in the C57BL/6J mice showed that after 21 days of 
this type of stress the BDNF level in hippocampus was 
lower than in the 7-day group [25]. 

The available data suggest an importance of the 
time of BDNF concentration measurement after per-
forming the experiment, stressing the possibility of its 
fluctuations. Marmigère et al. [95] have shown that 
after a short-term (15 or 60 min) IM the BDNF mRNA 
level increased rapidly and then decreased approxi-
mately 2–3 h after the stressor termination. Similarly, 
after 180 min exposure to IM, BDNF expression initial-
ly increased, then decreased to the level observed in 
the control group [95]. Moreover, it was also revealed 
that IM as a stressor can transiently increase BDNF ex-
pression, despite high levels of stress hormones [95]. 
These observations suggest that the rapid changes in 
BDNF concentration in hippocampus may be a part 
of the strong compensatory response triggered to 
maintain homeostasis, or suggest induction of the 
neuronal plasticity mechanisms triggered in animals 
when confronted with new stimuli. 

Interesting effects on BDNF expression were ob-
served in experiments with combination of stress 
and learning stimuli. In response to both acute and 
repeated IM stress, BDNF expression decreased in 
hippocampus [133]. However, animals additionally 
subjected to learning showed an increased expression 
of BDNF in comparison to those which were only 
stressed. Thus, learning and stress have the opposite 
effect on BDNF level and the effect of learning, lead-
ing to an increase in BDNF, is outweighing the stress 
effect. This observation may be of important practical 
significance for modifying animals’ behaviour.

An analysis of impact of the IM on the level of the 
BDNF mRNA in various brain areas showed significant 
differences between them. One-time 2 h or 8 h im-
mobilisation, as well as chronic (2 h/day, for 7 days) 
immobilisation caused a decrease in the BDNF mRNA 
level not only in the hippocampal sectors, DG but 
also in hypothalamus and several cortical areas of the 
Sprague-Dawley and Fischer 344/N rats [149–151]. 
On the other hand, a short-term (15 min) IM caused 
a significant increase in the BDNF mRNA and protein 
expression in PVN and SON in hypothalamus [119].  
Numerous studies showed that both short-term  
(2 h) and longer, repeated (7 days/2× daily) immobil-
isation increased the level of BDNF mRNA in the PVN, 

lateral part of the hypothalamus and pituitary in the 
Sprague-Dawley and Fischer 344/N rats [149–151]. 
Fluctuations in the BDNF content, resulting from 
changes in the expression of genes regulated by the 
concentration of stress hormones, may contribute to 
alterations in a density of dendritic spines in struc-
tures of the limbic system [19]. A consequence of 
decreased BDNF expression may be structural changes 
and neuronal loss [148].

The diversity of the presented results, and a high 
dependence of BDNF level on duration of exposure 
to the stressor and its type, suggests the existence 
of complex regulatory mechanisms responsible for 
expression of BDNF mRNA and its protein in the CNS. 
One can expect significant differences in these mech-
anisms among various brain areas.

Social stress, social defeat stress. Pattern of 
BDNF expression in rodents, resulting from changing 
social hierarchy and living conditions modified in ex-
periments, were the subject of previous studies [10, 
134, 138]. Modified housing conditions and social hi-
erarchy in the experimental animals (social stress) are 
natural stressors that can influence physiological pa-
rameters and behaviour [134]. A short-term (10 min)  
social stress in mice led to a decrease in BDNF mRNA 
content, 24 h after stimulation, in the CA1, CA3 sec-
tors of hippocampus, DG, BLA, piriform cortex, thala-
mus and hypothalamus [116]. The BDNF mRNA levels 
normalised after approximately 5 days. According to 
the authors, the BDNF changes may be responsible 
for reactions relaying on inhibition of the territory 
defence behaviours and anxiety.

Changes in housing conditions and social stress 
are long-term acting stressful factors [10, 138]. Nei-
ther 7 nor 21 days of the social stress, based on ex-
changing animals in cages, influenced the BDNF level 
in hippocampus in C57BL/6J mice [25]. An exposure of 
the NMRI mice to 4 weeks of an intermittent stressor 
(by placing animals in a new cage or social hazard 
conditions) increased the BDNF expression in hip-
pocampus among the socially endangered animals, 
but not in the mice placed in a new cage [113]. This 
can be explained by the role of BDNF in supporting 
mechanisms promoting behaviour related to defence 
of territory and offspring.

Other interesting observations come from studies 
conducted in a model which mimics conditions of 
the “isolation syndrome” and is based on depriving 
animals of social stimuli by placing them individual-
ly in cages [163]. The assessment of BDNF levels in 
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hippocampus, frontal cortex, hypothalamus, striatum 
and midbrain in C57BL/6J mice subjected to long-term 
social stress or social deprivation showed significant 
differences compared to the group with a stable social 
structure [20]. In the group of animals subjected to 
the social deprivation, an increased activity of the HPA 
and a lower level of BDNF were demonstrated in the 
examined brain areas, in comparison to animals from 
the group with the stable social structure. Thus, the 
chronic social deprivation, as opposed to the social 
instability, has been found to lead to emotional distur-
bance and neuroendocrine activation, combined with 
decreased BDNF levels [20]. In order to evaluate the 
effect of a long-term, 8 weeks partial social isolation 
on BDNF changes in hippocampus, the concentra-
tion of this neurotrophic factor was measured in the 
Sprague-Dawley rats placed in cages either single 
or in pairs [134]. Lower concentrations of the BDNF 
protein were present in the animals living in isolation. 
Reduction in the level of BDNF mRNA and protein 
after the chronic social isolation (social defeat stress) 
in rodents’ hippocampus has also been reported by 
other authors [156, 177]. A recent study by Viana 
Borges et al. [167] presenting a comparison of the 
effects of a social isolation (breeding in isolation) 
and a social support (breeding in pairs) on the level 
of BDNF in hippocampus of the Wistar rats addition-
ally subjected to chronic unpredictable stress (CUS) 
confirmed the above-mentioned results. Furthermore, 
in animals subjected to isolation the decrease in the 
BDNF level in hippocampus was accompanied by 
the long-term memory impairment [167]. Therefore, 
higher expression of BDNF in animals living in social 
groups indicates the important role of this factor 
in stimulation of the mechanisms developing social 
relationships and maintaining mental health [35]. It 
has also been suggested that a social support may 
contribute to protecting against some effects of the 
stress-induced epigenetic modulation of BDNF genes 
[167]. This may be manifested by the preservation of 
cognitive functions. However, the detailed explana-
tion of these regulatory mechanisms requires further 
research.

Predator odour. To assess reactions caused by fear 
of predators (predator scent stress), a test involving 
exposure of rodents to a smell of predator urine has 
been developed [80, 81]. After a single, short-term  
(10 min) exposure to the stress factor, the level of 
BDNF mRNA in the CA1 sector of hippocampus was 
assessed 7 days after the exposure. Cat smell in-

creased anxiety behaviour, which correlated with the 
long-term decline in BDNF mRNA [81]. It has been 
suggested that the action of the aforementioned 
stressor, via changes in BDNF expression, may lead 
to remodelling of the neuronal connections in hip-
pocampus [81].

Chronic mild stress. In order to simulate un-
predictable situations that may occur in the rodents 
environment, a model of chronic mild stress (CMS) 
was developed [170]. This model reflects many types 
of stimuli inducing anxiety behaviour. However, oc-
casionally changes in physiological parameters and 
behavioural responses after its use are ambiguous. In 
hippocampus of the rats exposed to CMS an increase 
in the BDNF mRNA expression was reported, not a de-
crease, as it could be expected, despite a behavioural 
response resembling depression [85]. Other authors 
have reported reduced [78] or increased anxiety [77] 
after using this stress model. It has been suggested 
that this type of stressor affects emotional behaviour 
and, indirectly, also the activation of the HPA and the 
level of BDNF [110]. The substantial discrepancies in 
the results may be due to the interplay of different 
neurobiological variables. This means that various 
signalling pathways responsible for regulation of the 
BDNF expression may be activated, adapting the brain 
to different situational contexts and emotional states.

Osmotic stress. The sensitivity of the hypotha-
lamic nuclei to the osmotic stimuli was the basis for 
elaboration of a test which is useful for detection of 
the BDNF protein and mRNA level changes [4, 6, 28]. 
Three and 4.5 h after intraperitoneal administration of 
3 mL of hypertonic 1.35% NaCl solution, an increase 
in the BDNF mRNA and BDNF protein concentration in 
the PVN and SON was reported in the Sprague-Dawley 
and Wistar rats [4, 6, 28]. The obtained results suggest 
the existence of a mechanism regulating the BDNF 
content, associated with sensitive to the osmotic 
stimuli areas located in hypothalamus.

Forced swimming. There is a documented evi-
dence that the FS is responsible for inducing com-
pensatory homeostatic mechanisms to prevent or 
reduce cytokine activation during a stress response 
[115, 117]. Although mechanisms of such reactions 
are not completely understood, there are premises 
indicating that neurotransmitter systems (e.g. glu-
tamatergic or monoaminergic) as well as the HPA 
axis are involved [115, 117]. Interestingly, studies 
showed that both a single (20 min) and a chronic  
(20 min/21 day) FS episodes did not cause changes in 
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the density of BDNF-ir neurons in the PVN and SON 
nuclei in hypothalamus of the adult Wistar rats [12]. 
One can assume that the relatively low harmfulness 
of the applied stimulus could have prevented changes 
in the density of BDNF-ir neurons.

High light-open field stress. HL-OF is a relative-
ly strong stressor which may initiate structural and 
functional changes in several brain areas [64, 118]. 
The numerical density of BDNF-ir neurons in the PVN 
and SON was analysed in the Wistar rats undergoing 
HL-OF [12]. After a single 20 min exposure to HL-OF, an 
increase in BDNF-ir in the SON was observed, which 
most likely was related to an increase in the level of 
neurohormones (e.g. AVP), synthesized depending on 
the HPA axis activity. However, the long-term 21-day 
stimulation with HL-OF did not affect the density of 
BDNF-ir neurons. One can presume that the activity 
of the HPA was not maintained at a sufficiently high 
level for such a long period of time or that the ex-
perimental animals adapted to this type of stressor.

Aging

It is commonly accepted that animal’s response 
to stress changes with age [93, 115]. Aging is a life 
period related with apparent changes of many func-
tions of the limbic system and the neuroendocrine 
activity [112, 115]. One of the consequences of aging 
is an increased lability of the HPA, which can lead 
to changes in its activation [22, 103, 115]. This is 
due to an impairment of the controlling the stress 
response mechanisms regulating the HPA activity 
which involve several brain structures, among which 
the most important are hypothalamus, hippocampus, 
and amygdala [115, 144, 146]. All this limits the 
ability to response adequately to stress [112, 115]. 
The dysregulation of the system controlling stress 
response is manifested by a decreased inhibition 
of the HPA activity and termination of the stress 
response [57, 115].

An impairment of the negative feedback regulato-
ry mechanisms of the HPA significantly modifies the 
action of glucocorticoids and their receptors [115]. 
It also influences the stress-dependent synthesis and 
secretion of the other neurohormones such as cat-
echolamines [14, 93, 129], and increases the neuronal 
sensitivity to apoptosis [30, 131]. Importantly, during 
aging a stronger stimulus is required to induce a stress 
response, which in some cases may even increase 
the intensity of the reaction [112]. Finally, there are 
compensatory mechanisms activated during aging 

that enable adaptation to changing environmental 
conditions [56]. Activation of systems involved in the 
stress response was observed even in the absence of 
the stressor, which could be regarded as a state of 
readiness [56].

Immobilisation and chronic mild stress. Data 
about changes in BDNF expression in aging animals 
under influence of a mild stressor is still incomplete. 
Immobilisation reduced BDNF expression in hippocam-
pus in older rodents [149]. This effect was present 
both after short- and long-term immobilisation. In 
the 24 month-old Fischer 344/N rats, a decrease in the 
BDNF mRNA in the DG was observed immediately after 
2 h immobilisation [149]. The chronic immobilisation 
(2 h/7 days) reduced the BDNF mRNA in hippocampus 
in old (24 month) male Fischer 344/N rats [148].

A CUS model has been used to evaluate changes 
in BDNF expression in hippocampus [88, 142]. After 
an exposure of different duration (up to 28 days) 
on chronic unpredictable mild stress, a decrease in 
the BDNF mRNA expression in hippocampus was 
reported in the 22-month-old Sprague-Dawley rats 
[142]. Similarly, a 3-week exposure to CUS induced 
a decreased expression of BDNF in the hippocampal 
CA3 and DG in the 15-month-old Wistars [88]. A mild 
stress-induced decrease in BDNF expression in the 
hippocampal neurons is of a particular importance 
due to enhancement of changes in cognitive func-
tions, learning, and memory during aging [1]. They 
could be a result of the impaired long-term synaptic 
enhancement observed at this stage of ontogenesis 
[8, 75]. Less effective synaptic transmission prevents 
repeated neuronal stimulation which, in turn, may 
result in receptor desensitization and finally, prevents 
neuronal damage [154]. This process can be regarded 
as one of the positive compensatory mechanisms 
preventing structural and functional damage in the 
CNS during aging. 

Forced swimming. The FS is useful for assessing 
changes in BDNF expression during aging. A short-
term stressor of 10 min swimming in cold water at 4°C 
induced a rapid increase in BDNF and the BDNF mRNA 
in hippocampus in the 22-month-old Sprague-Daw-
ley rats, already 15 min after its completion [143]. 
A long-term FS of 10 min for 21 days in 25°C water 
reduced expression of the BDNF mRNA and protein 
after 60 min [143]. FS stimulation was also used to 
assess changes in the density of BDNF-ir neurons of 
the hippocampal pyramidal cell layer of CA1, CA3, 
and granular neurons in DG, and in the PVN and 
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SON nuclei of hypothalamus in P360 and P720 Wistar 
rats [11–13, 53]. After 20 min FS, an increase in the 
density of BDNF-ir neurons in CA2 and CA3 sectors 
of hippocampus was reported in the aged animals 
(P720) [11]. However, no difference was observed 
in the density of BDNF-ir neurons after exposure to 
chronic FS of 20 min/21 days in P360 and P720 age 
groups compared to the control groups [11–13, 53]. 
The explanation of these results may provide a hy-
pothesis assuming that the increase in expression of 
neurotrophins, including BDNF, after a short-term 
stress may be associated with the consolidation of 
information about a harmless event in order to pre-
pare the future response to a new stressful stimulus 
[95]. The lack of increase in BDNF expression after 
prolonged stimulation with a harmless stimulus can 
be also explained by habituation.

High light-open field stress. An effect of stimula-
tion with the HL-OF stressor on the density of BDNF-ir 
neurons was assessed in the pyramidal cell layer in 
the CA1, CA2, CA3 sectors of hippocampus, granule 
cells layer in the DG, and in the PVN and SON nuclei 
of hypothalamus in the Wistar rats [11, 12, 53]. While 
after exposure to an acute 20 min stress the density 
of BDNF-ir neurons increased in CA1–CA3 regions of 
hippocampus, it decreased in the PVN in P720 [11, 
12]. However, a chronic 21-day HL-OF stimulation 
did not change the density of BDNF-ir neurons in the 
examined brain structures in both P360 and P720 
[11, 12, 53].

The increase in the density of BDNF-ir neurons 
after a single HL-OF stressor stimulation can be ex-
plained by the change in the HPA activation leading 
to the raised release of neurohormones. Interesting-
ly, the increase in the BDNF-ir density of pyramidal 
neurons after the short-term stressor exposure may 
stimulate memory in the aged animals [135]. The 
above-mentioned “state of readiness” or alert, may be 
responsible for prevention of the reduction in BDNF 
level after the chronic stress in the older animals [56]. 
The repeated exposure to the same stressor may also 
cause habituation [88].

CONCLUSIONS
Although almost each stressor is believed to in-

crease the activity of the HPA, the response of neurons 
to individual stressors varies considerably. This may 
result from the number of involved neurotransmitters, 
neurohormones and neurotrophic factors, including 
BDNF. Based on the presented data, one can conclude 

that the effect of stressful stimuli on BDNF expression 
in the various brain areas at the specific stages of the 
ontogenetic development depends on several factors, 
such as species and genotypic characteristics of ex-
perimental animals, and their individual resistance 
to stress. In addition, the psychophysical condition 
seems to be of great importance, as it determines the 
way of coping with the stressful situations. Important 
factors to consider that may affect the results of re-
search on stress mechanisms are: a type of stressor 
used, an experimental model of stress, an analysed 
brain area, the precision of the BDNF detection meth-
od, time of assessment of the neurotrophin level after 
stress stimulation, the tested form of neurotrophin 
(precursor or mature form of BDNF) and, finally, the 
BDNF mRNA level. The presented data, on the one 
hand, indicate participation of BDNF in response to 
a wide range of stressors. On the other hand, they 
point to a different dynamics of changes in this neu-
rotrophin level, depending on the type of stressor and 
the stage of ontogenetic development. Results of the 
studies using various experimental stress models in-
dicate the multidirectional effect of BDNF on shaping 
the response to stress. Further studies are warranted 
to better understand the role of this neutrophin in 
the CNS during a stress response, and to consider its 
potential use in designing new, effective strategies 
of stress prevention or treatment.
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