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The aim of this study was to investigate the influence of two periods of life,
namely P28 and P360, on the changes in interleukin-1beta (IL-1b) immunore-
activity (-ir) in the hippocampus (CA1, CA3, DG) and amygdala (central-CeA,
medial-MeA) caused by acute and repeated open field (OF), or by forced swim
(FS) exposition. Rats were divided into groups: non-stressed, exposed to acute
(one-time for 15 min) and chronic stressors (21 days for 15 min daily). We
found IL-1b-ir in the control group to be higher in P360 than in P28. In P28,
under OF and FS exposure, IL-1b-ir in the CeA remained unaltered but increased
in the MeA and in the hippocampus after acute and chronic stress. In P360 no
changes were observed in the IL-1b-ir level after acute and chronic stimulation.
These data demonstrate that only the levels of IL-1b-ir in juvenile rat brains are
affected by FS and OF. Additionally, there was no significant difference be-
tween FS and OF stimulation in IL-1b-ir. (Folia Morphol 2009; 68, 3: 119–128)
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INTRODUCTION
The structures of the limbic system are implicat-

ed in many functions which are altered by adverse
experience and play an important role within the
neural circuitry controlling responses to stressor stimu-
lation [3, 7, 9, 12, 26, 32, 42, 45].

Repeated stress, caused, for example, by involve-
ment of endogenous inflammatory cytokines like in-
terleukin-1beta (IL-1b), leads to plastic changes in
neurons of the CNS [2, 17, 36].

IL-1b is a pleiotropic, proinflammatory cytokine,
produced within the central nervous system in re-
sponse to neuron damage or stress stimuli [15, 43].
In the brain, IL-1b serves numerous diverse func-
tions, forcing neurochemical, neuroendocrine, neu-
roimmune, and behavioural changes [23, 34, 36,
40]. Endogenous IL-1b plays a major physiological
role in the normal, healthy brain [40]. It is synthe-
sized in glia (microglia and astrocytes) and neu-

rons, both of which respond to stress factors [20,
30, 33, 40, 46].

There is evidence that IL-1b is one of the key me-
diators linking immune signals associated with stres-
sors to the hypothalamic-pituitary-adrenocortical
(HPA) function [16, 34]. Stress-induced changes in
IL-1b have been localized in various brain regions
[10, 25, 37, 40]. Exposure to acute stressors such as
immobilization, tailshock, and footshock has been
shown to induce IL-1b expression in some regions of
the limbic system, while other stressors — restraint,
social isolation, predator exposure, and forced swim
— have no effect [34]. This disparity of findings has
led to considerable controversy regarding the ability
of stressors to induce IL-1b expression.

Open field (OF) and forced swim (FS) tests are
deemed aversion stimuli; hence they are used as
experimental models for the assessment of despair/
/depression-like behaviour [13, 29, 44, 50]. Through
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the application of the tests, it is possible to create
conditions for neurogenic stress response, and
thereby to evoke neuronal activity. The OF test cor-
responds to a psychological, emotional stressor
whereas the FS test, to a psychophysical stressor
[8, 11, 52].

Contrary to the diverse stressors investigated in
various periods of life (predominantly in adults), the
influence of mild stressors in the OF and FS tests on
IL-1b expression in the juvenile and aged limbic sys-
tem structures needs to be explored further.

Considering the psychophysiological changes in
juvenile and aged rats, our aim was to assess the
influence of age (juvenile: P28 and aged: P360) on
producing IL-1b under acute and chronic stressors
in FS and OF tests in chosen structures of the
amygdala (central CeA and medial MeA nuclei) and
hippocampus (CA1, CA3, DG).

MATERIAL AND METHODS

Animals

The material consisted of 26 Wistar male rats.
The animals were divided into two age groups —
juvenile: P28, and aged: P360 days old (P — post-
natal day). Each age group comprised 3 non-stressed
control rats and 5 experimental animals exposed to
acute or chronic stressors. At the beginning of the
chronic stress stimulation, the P28 group were sev-
en days old (P7). The rats were kept singly in plastic
cages and were given free access to water and food
pellets. The care and treatment of the rats were in
accordance with the guidelines for laboratory ani-
mals established by the National Institute of Health
as well as by the Local Ethical Committee of the
Medical University of Gdańsk.

The animals from the experimental groups were
exposed to the stressors in the OF or FS tests.

Open field test

The open field test (OF) procedure applied to this
experiment has been described in our previous study
[1, 22]. The open field area constituted a wooden
white box (100 ¥ 100 ¥ 40 cm), illuminated by
a 500 W halogen light. Each animal was gently placed
in the centre of the box to provoke stress reaction.

Forced swim test

The forced swim (FS) stressor was performed ac-
cording to the method of Porsolt et al. [35] in a verti-
cal glass cylinder (45 cm high, 20 cm in diameter),
filled with 22/23°C water. The depth of the water was

chosen so that the animals had to swim or float with-
out their hind limbs or tail touching the bottom.

Experimental procedure

The rats were exposed to the open field test or
forced swim test between 9:00 a.m. and 2:00 p.m.
Each rat underwent single acute (lasting 15 min) or
repeated (during 21 days for 15 min daily) testing.
After each experiment the animals were placed back
in their home cages. The control animals remained
in their home cages until perfusion. Ninety minutes
after administering the tests all rats were deeply
anesthetized with lethal doses of Nembutal (80 mg/kg
of body weight).

The anesthetized animals were perfused transcar-
dially with 0.9% saline solution and heparin, followed
by 4% paraformaldehyde solution in 0.1 M phosphate
buffer (pH 7.4). The brains were postfixed in 4% pa-
raformaldehyde for 3–4 hours and then kept in
0.1 M phosphate buffer containing 10% sucrose
(overnight at 4°C) and then 30% sucrose (until sunk).
Coronal serial sections of the brain were cut 40 µm
thick using a JUNG 1800 cryostat (Leica, Germany).
IL-1b expression in the brain was examined with the
use of immunohistochemical analyses.

Immunohistochemistry

The sections were subsequently stained with the
use of single and double immunohistochemical (IHC)
staining methods. The free-floating sections were
blocked with 10% Normal Goat Serum (NGS), con-
taining 0.3% Triton X-100, for 2 hours and then in-
cubated with primary polyclonal rabbit anti-IL-1b

antibody (Endogen; dilution 1:100) or a mixture of
primary polyclonal rabbit anti-IL-1b antibody (En-
dogen; dilution 1:100) and monoclonal mouse anti-
-NeuN antibody (Chemicon; dilution 1:500) in 10%
NGS for 48 hours at 4°C. After multiple rinses in
phosphate buffered saline ph 7.4 (PBS), the sections
were incubated (2–3 hours at room temperature)
with appropriate secondary antibodies: Cy3-conju-
gated goat anti-rabbit (Jackson ImmunoResearch;
dilution 1:600) or a mixture of: Cy3-conjugated goat
anti-rabbit (Jackson ImmunoResearch; dilution
1:600) and Alexa Fluor 488-conjugated goat-anti-
-mouse (Molecular Probes; dilution 1:150).

The immunohistochemically stained slides were
examined with an Eclipse 600 fluorescent micro-
scope (Nikon, Japan) with confocal system Radiance
2100 (Bio-Rad, UK), equipped with a Krypton/Argon
laser. The confocal microscopy images were obtained
using 40¥ and 60¥ objective lenses. The optimal
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iris was used for each magnification, and only the
sections completely stained with fluorescence were
taken into account.

Semiquantitative analysis

The number of cells in the amygdala (CeA and
MeA nuclei) and hippocampal regions (CA1, CA3 and
DG) was estimated semiquantitatively, and classi-
fied into the following: ± very low, + low, ++ mo-
derate, +++ high.

RESULTS
Analysis of double-stained sections (IL-1b with

NeuN) revealed that IL-1b immunoreactivity ap-

peared predominantly in the glia in both juvenile
and aged rats. Moreover, IL-1b immunoreactive neu-
rons were observed more frequently in aged than in
juvenile animals in the control group, and the same
result was obtained under stress stimulation in all
the investigated structures (Fig. 1).

IL-1b-ir was detected in the juvenile as well as in
the aged rats of the control group; its content, how-
ever, depended on the age of the animals and the
investigated structures (Tables 1, 2; Figs. 2–5). A very
low number of IL-1b immunoreactive cells were
found in P28 in the CeA and MeA nuclei of the
amygdala, and a relatively small quantity of these
cells were also observed in the hippocampal regions

Figure 1. IL-1b immunoreactive glia (red) (arrow heads) and neurons (green) and double immunostaining with IL-1b/NeuN (arrow) in
studied structures of the limbic system in the control, and after acute and chronic stress in P28 and P360; FS — forced swim test;
OF — open field test; CA1 — hippocampal region; DG — hippocampal region; MeA — medial amygdaloid nucleus. Scale bar 50 mm.
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(CA1, CA3, DG). In the case of the P360 group,
a low number of IL-1b-ir cells was noted in CeA and
MeA, but the level of IL-1b-ir in the hippocampus
(CA1, CA3, DG) was high (Tables 1, 2; Figs. 2–5).

Influence of animal age and stress duration on
the IL-1bbbbb-ir content in the amygdala

In the group of juvenile rats (P28) submitted to
acute FS and OF stress stimulation, the amount of
IL-1b immunoreactivity in the CeA did not signifi-
cantly differ, and did not change under chronic ex-
posure to stressors, whereas the content of IL-1b-ir
in the MeA increased under acute and repeated FS
and OF tests (Table 1; Fig. 2).

The differences in the levels of IL-1b-ir in the CeA
and MeA nuclei between individuals of the aged
(P360) rats after both acute and long-term stimula-
tion were insignificant (Table 2; Fig. 3).

There was no disparity in the IL-1b-ir level between
the juvenile and aged animals under acute and long
term stress stimulation (Tables 1, 2; Figs. 2, 3).

Influence of animal age and stress duration on
the IL-1bbbbb-ir content in the hippocampus

The study showed an increase of IL-1b-immunore-
activity in the juvenile (P28) rats in the hippocampal

Table 1. Semiquantitative data concerning IL-1b-immunoreactivity in the amygdala (CeA, MeA) and hippocampus
(CA1, CA3, DG) in P28 in rats

Limbic region Non-stressed Acute stress Chronic stress
(control) FS OF FS OF

CeA ± ± ± ± ±

MeA ± + + + +

CA1 + ++ ++ ++ ++

CA3 + ++ ++ ++ ++

DG + ++ ++ ++ ++

Number of immunoreactive cells: ± very low; + low; ++ moderate; OF — open field; FS — forced swim

CA1, CA3, and DG regions under both acute and
chronic FS and OF (Table 1; Fig. 4). In the aged (P360)
rats, there were no differences of IL-1b-ir content in
these regions after acute or repeated stimulation
(Table 2; Fig. 5).

The comparison of the IL-1b-ir contents in the
CA1, CA3, and DG hippocampal regions in the juve-
nile and the aged animals under acute and chronic
FS and OF exposure did not reveal any differences
(Tables 1, 2; Figs. 4, 5).

DISCUSSION
In our study all the investigated structures of the

limbic system showed the most intense IL-1b immu-
noreactivity in the glia cells and in scattered neu-
rons. The expression of IL-1b in neurons increased
with age and under stress conditions. According to
Kwon et al. [24], expression of IL-1b in neurons un-
der chronic stress appears to be related to neuronal
injury rather than neuronal protection or physiolo-
gical function. The results of our research may con-
firm that IL-1b is a contributor to neurodegenera-
tive disorders caused by age and by neuronal injury
after chronic stress.

In the control groups, IL-1b-ir appeared both in the
juvenile and in the aged animals, but a higher expres-

Table 2. Semiquantitative data concerning IL-1b-immunoreactivity in the amygdala (CeA, MeA) and hippocampus
(CA1, CA3, DG) in P360 in rats

Limbic region Non-stressed Acute stress Chronic stress
(control) FS OF FS OF

CeA + + + + +

MeA + + + + +

CA1 +++ +++ +++ +++ +++

CA3 +++ +++ +++ +++ +++

DG +++ +++ +++ +++ +++

Number of immunoreactive cells: + low; +++ high; OF — open field; FS — forced swim
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sion of IL-1b was found within the investigated
amygdaloid nuclei and hippocampal regions in the
aged control rats than in the juvenile individuals. It
has been reported by several authors [21, 23, 28, 48],
and demonstrated in our study, that among the chang-
es which occur in the brain during the aging process,
an increase in brain concentrations of proinflammato-
ry cytokines, like IL-1b, is quite considerable [6]. Based
on the findings, it can be concluded that IL-1b is en-
gaged in natural age-related processes (neurodegen-
eration) in the amygdala and hippocampus.

Compared with the control group, in the juve-
nile rats acute and chronic exposure to FS and OF
stressors appeared to increase the level of IL-1b-ir in
the amygdaloid MeA nucleus, but had no effect in
the CeA, whereas in the hippocampus we observed
an increase of IL-1b-ir in the investigated regions
after both kinds of stimulation.

Our findings provide evidence for amygdala and
hippocampal functions in anxiety-related behaviour,
and indicate that these regions are differentially regu-
lated by stress conditions [49].

Figure 2. IL-1b immunoreactivity in the studied nuclei of amygdala in P28 in control animals, and those exposed to acute and chronic
open field (OF) test or forced swim (FS) test; CeA — central nucleus; MeA — medial nucleus. Scale bar: 100 mm.
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It is known that CeA and MeA play a key role in
the regulation of stress response by HPA axis activi-
ty [5, 18, 19]. The activation of MeA and/or CeA
depends on the kind of stress stimulation [4, 8].
Dayas et al. [9] also observed that the medial, rath-
er than central, amygdala is critical to hypothalamic
activation during emotional stress response. The in-
crease of IL-1b-ir in the MeA nucleus in juvenile rats
may indicate intensive and long lasting emotional re-
actions after exposure to acute and chronic FS and OF.

It is widely accepted that the hippocampus is
sensitive to different stressors [27]. Romeo et al. [38]
found that juvenile rats might be especially sensi-

tive to stress, exhibiting a significantly prolonged
hormonal stress response. Other researchers report-
ed increased IL-1b levels in the hippocampus under
different acute and repeatable stressors in juvenile
animals [24, 47, 48]. Murray and Lynch [31] observed
that rats under mild stress showed an increase in cir-
culating corticosterone which correlated with increased
IL-1b concentration. In our study, hippocampal re-
sponse of juvenile rats to acute and repeatable expo-
sure to FS or OF resembled that which had been found
by the above authors. It is thought that immune re-
sponse via activation of the stress system stimulates
secretion of IL-1b in juvenile animals [14, 39, 51].

Figure 3. IL-1b immunoreactivity in the studied nuclei of amygdala in P360 in control animals, and those exposed to acute and chronic
open field (OF) or forced swim (FS) tests; CeA — central nucleus; MeA — medial nucleus. Scale bar: 100 mm.
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The data gathered during our experiment
showed that the number of IL-1b-ir cells in the in-
vestigated nuclei of amygdala and hippocampal re-
gions did not change after acute or repeated FS and
OF stress stimulation in the P360 group compared
with the unexposed controls. Corresponding find-
ings were recorded by Plata-Salaman et al. [34], who
did not observe any discrepancies in the levels of
IL-1b in the hippocampus of adult rats after acute
predator exposure and restraint stress. Similarly,
Deak et al. [10] demonstrated that single exposure
to the forced swim test or novelty stimulation did
not change the IL-1b level in the adult rat hippo-

campus. We proved in our study that the response
of the aged animals to FS or OF exposure is much
the same as the response of adult rats. These data
suggest that FS and OF stressors do not play a role
in the increase of IL-1b expression in the aged rats.
It is presumed that a natural stressor may provoke
compensatory homeostatic mechanisms, which con-
sequently might prevent neuroinflammatory re-
sponses to stress [34, 41]. Therefore P360 aged rats
are probably more resistant to stressful stimuli than
juvenile animals. It can also be deduced that mild
stress does not represent a risk factor for permanent
alterations in habituation processes in aged rats [11].

Figure 4. IL-1b immunoreactivity in the hippocampal regions CA1, CA3, and DG (dentate gyrus) in P28 in the control animals, and those
exposed to acute and chronic open field (OF) or forced swim (FS) tests. Scale bar: 100 mm.
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Finally, we observed no fundamental differences
in IL-1b expression in either type (FS or OF) of stress
stimulation. This may imply that these types of stres-
sors are of similar intensity and affect the investigat-
ed structures of the limbic system in a similar man-
ner. Both stressors are of a neurogenic, psychoemo-
tional nature, and we may conclude, thereby sup-
porting the hypothesis provided by Herman and Cul-
linan [18], that limbic structures are activated by stres-
sors involving higher-order sensory processing which,
in turn, can be manifested in similar IL-b levels.

CONCLUSIONS
The levels of IL-1b in the investigated structures

were affected by stress exposition in the juvenile rats
only. No fundamental differences in the concentra-
tion of IL-1b-ir were demonstrated in the FS and OF
tests.
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