46 research outputs found

    Identification of the safe(r) by design alternatives for nanosilver-enabled wound dressings

    Get PDF
    The use of silver nanoparticles (NPs) in medical devices is constantly increasing due to their excellent antimicrobial properties. In wound dressings, Ag NPs are commonly added in large excess to exert a long-term and constant antimicrobial effect, provoking an instantaneous release of Ag ions during their use or the persistence of unused NPs in the wound dressing that can cause a release of Ag during the end-of-life of the product. For this reason, a Safe-by-Design procedure has been developed to reduce potential environmental risks while optimizing functionality and costs of wound dressings containing Ag NPs. The SbD procedure is based on ad-hoc criteria (e.g., mechanical strength, antibacterial effect, leaching of Ag from the product immersed in environmental media) and permits to identify the best one among five pre-market alternatives. A ranking of the SbD alternatives was obtained and the safer solution was selected based on the selected SbD criteria. The SbD framework was also applied to commercial wound dressings to compare the SbD alternatives with products already on the market. The iterative procedure permitted to exclude one of the alternatives (based on its low mechanical strength) and proved to be an effective approach that can be replicated to support the ranking, prioritisation, and selection of the most promising options early in the innovation process of nano-enabled medical devices as well as to encourage the production of medical devices safer for the environment

    Guiding the development of sustainable nano-enabled products for the conservation of works of art: proposal for a framework implementing the Safe by Design concept

    Get PDF
    Nanotechnology provides innovative and promising solutions for the conservation of cultural heritage, but the development and application of new nano-enabled products pose concerns regarding their human health and environmental risks. To address these issues, we propose a sustainability framework implementing the Safe by Design concept to support product developers in the early steps of product development, with the aim to provide safer nano-formulations for conservation, while retaining their functionality. In addition, this framework can support the assessment of sustainability of new products and their comparison to their conventional chemical counterparts if any. The goal is to promote the selection and use of safer and more sustainable nano-based products in different conservation contexts. The application of the proposed framework is illustrated through a hypothetical case which provides a realistic example of the methodological steps to be followed, tailored and iterated along the decision-making process

    Interaction between copper oxide nanoparticles and amino acids: Influence on the antibacterial activity

    Get PDF
    The increasing concern about antibiotic-resistance has led to the search for alternative antimicrobial agents. In this effort, different metal oxide nanomaterials are currently under investigation, in order to assess their effectiveness, safety and mode of action. This study focused on CuO nanoparticles (CuO NPs) and was aimed at evaluating how the properties and the antimicrobial activity of these nanomaterials may be affected by the interaction with ligands present in biological and environmental media. Ligands can attach to the surface of particles and/or contribute to their dissolution through ligand-assisted ion release and the formation of complexes with copper ions. Eight natural amino acids (L-Arg, L-Asp, L-Glu, L-Cys, L-Val, L-Leu, L-Phe, L-Tyr) were chosen as model molecules to investigate these interactions and the toxicity of the obtained materials against the Gram-positive bacterium Staphylococcus epidermidis ATCC 35984. A different behavior from pristine CuO NPs was observed, depending on the aminoacidic side chain. These results were supported by physico-chemical and colloidal characterization carried out by means of Fourier-Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo-Gravimetric Analysis (TGA), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and light scattering techniques (Dynamic Light Scattering (DLS), Electrophoretic Light Scattering (ELS) and Centrifugal Separation Analysis (CSA)

    Magnetic interactions in Spin-labeled Au nanoparticles

    Get PDF
    A series of gold nanoparticles functionalized with TEMPO-modified disulfide 2 have been prepared and studied by electron paramagnetic resonance (EPR) spectroscopy, UV-vis, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA). In order to increase the packing of spin labels on the particle surface, heat-induced size evolution and ligand exchange reactions were used. The optimized synthesis included a one-pot reaction at room temperature that led to gold nanoparticles with a controlled large size (ca. 7 nm) and high coverage of radicals. These nanoparticles showed a |Δms| = 2 transition at half-field, which gives direct evidence of the presence of a high-spin state and permits an EPR study of the nature of the magnetic coupling between the spins. The results showed dominant antiferromagnetic interactions between radicals, but at lower temperatures, a ferromagnetic contribution was observed

    Extending substrate sensing capabilities of zinc tris(2-pyridylmethyl)amine-based stereodynamic probe

    No full text
    Tripodal metal complexes have been widely used for catalysis and more recently also for molecular recognition applications. Their ability in recognition and signal amplification of chiral substrates is because of the setup of the ligand around the metal in a propeller shape. Within this subject, we have recently reported tris(2-pyridylmethyl)amine- and triphenolamine-based complexes for the determination of the enantiomeric excess of various substrates. Herein, we show the versatility of the zinc tris(2-pyridylmethyl)amine-based stereodynamic probe by performing a detailed study of the imine formation process, by the extension of the sensing capabilities to other chiral compounds. A principal component analysis study of the system together with TD-DFT studies highlights the molecular origin of the observed chiroptical properties

    A multitechnique approach for the identification of multiple contamination sources near a polluted industrial site

    No full text
    Degraded land requires rapid and suitable remedial actions, thus appropriate and fast methodological approaches for estimating the spatial distribution of contaminants are needed. In this context, a methodological approach combining isotopic measurements, heavy metals concentrations mapping, X-ray diffraction, and cluster analysis, was applied to characterize a polluted industrial site where the contamination due to improper waste disposal could have spread also into the surrounding fields. This approach was applied to a set of representative topsoil (from 15 to 30 cm depth) and subsoil (from 130 to 150 cm depth) samples, selected either inside or outside the contaminated site. The X-ray diffraction analysis highlighted that only the mineralogy of the subsoil below the buried waste was noticeably altered, while the concentration mapping highlighted that the levels of several heavy metals on the edge of the contaminated site, at both depths, were very similar to those found in the samples from the outside. Based on these findings, Pb was used as a tracer for heavy metal pollution by its stable isotopes' analysis. The cluster analysis of the isotopic measurements revealed that only the contamination detected inside the industrial site could be attributed to the pollutants migration from the buried waste. Conversely, the contaminants concentrations found in the topsoil samples taken outside the site could be ascribed to contamination sources other than the polluted waste present inside the site

    A methodology to assess a mobile urban street cleaning activity

    No full text
    An experimental methodology to assess the human exposure of a street cleaning service, performed by a worker handling a leaf blower followed by a water-flushing sweeper, was developed. The sampling campaign was achieved by considering data from road dust, personal air sampling and portable particulate matter detector. The experimental design allowed to obtain qualitative and quantitative information on the chemical composition of road dust, the size and chemical composition of potentially inhalable particles suspended during the street cleaning activity, as well as the duration of the particles' suspension effect. The methodology employed showed: i) the compliance with the occupational exposure threshold values for the total inhalable dust and with the occupational exposure limit values according to national and international regulatory approaches for polycyclic aromatic hydrocarbons (PAH) and inorganic elements; ii) a good agreement of the metals concentrations from the road dust (i.e., calcium, magnesium, potassium, iron, aluminium and sodium) with those from the material collected by the personal air sampler, highlighting the negligible effect of the investigated sweeping activity compared to the material already present on the road; iii) a similar pattern of inorganic elements within the three different monitoring areas; iv) a “dust wave” effect detected by the particle counter lasting no more than 2 min. Thus, such information suggested that performing the urban sweeping activity in the early mornings, when there is a general low PM10-PM2.5 average concentration, low traffic intensity, and the almost absence of passers-by, lead to a low probability of citizens’ exposure

    Magnetic Interactions in Spin-Labeled Au Nanoparticles

    No full text
    A series of gold nanoparticles functionalized with TEMPO-modified disulfide 2 have been prepared and studied by electron paramagnetic resonance (EPR) spectroscopy, UV–vis, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA). In order to increase the packing of spin labels on the particle surface, heat-induced size evolution and ligand exchange reactions were used. The optimized synthesis included a one-pot reaction at room temperature that led to gold nanoparticles with a controlled large size (ca. 7 nm) and high coverage of radicals. These nanoparticles showed a |Δ<i>m</i><sub>s</sub>| = 2 transition at half-field, which gives direct evidence of the presence of a high-spin state and permits an EPR study of the nature of the magnetic coupling between the spins. The results showed dominant antiferromagnetic interactions between radicals, but at lower temperatures, a ferromagnetic contribution was observed
    corecore