2,359 research outputs found

    Comparison between Feature Based and Deep Learning Recognition Systems for Handwriting Arabic Numbers

    Get PDF
    Feature extraction from images is an essential part of the recognition system. Calculating the appropriate features is critical to the part of the classification process. However, there are no standard features nor a widely accepted feature set exist applied to all applications, features must be application dependent. In contrast, deep learning extract features from an image without need for human hard-coding the features extraction process. This can be very useful to build a model for classification which can classify any type of images after trained with enough images with labels then the trained model can be used in different recognition applications to classify. This paper presents two techniques to build recognition system for Arabic handwriting numbers, the feature-based method shows accepted results. However, the deep learning method gives more accurate results and required less study on how Arabic number is written and no hand-coding algorithms needed for feature extraction to be used in the classification process. Keywords: Handwriting Recognition, Image Processing, Features Extraction, Machine Learning, Deep Learning, Classification

    Considering Green Corridors in Road Networks: An Integrated Gray-Green approach for Urban Development in Cairo, Egypt.

    Get PDF
    Green corridors are one of the main features for sustainability, they refer to ecological qualities and are basic elements for resilient cities. Many global cities are oriented towards green construction to protect their environments from rapid urbanization and its destructive impact on nature. However, in other cities, this is extremely challenging. In Cairo, contemporary developments are directed towards constructing the ‘Gray’ road networks, whereas the ‘Green’ is nearly disappearing. This study introduces an integrated ‘Gray-Green’ approach for urban development in Cairo, where green corridors are considered to achieve a livable sustainable urban environment. First, the study discusses characteristics, benefits and challenges for green corridor construction. Then, it presents three different visions and approaches for three international projects adopting green corridor concepts within their urban development. The study then depends on a comparative analysis between the three mentioned projects and the fourth case in Cairo. This analysis explores themes, objectives, challenges and actions for each project in order to conclude a proposed action plan for Cairo. This plan is considered an adaptive process for fostering environmental, social and economic sustainability in Cairo

    Atmospheric transport of hydrogen sulfide from proposed geothermal power plant (unit 13). Predictions by physical modeling in a wind tunnel

    Get PDF
    CER76-77RLP-JEC-SA51.Prepared for Aminoil USA, Incorporated.Includes bibliographical references (page 32).April 1977

    Circulation of vented gases around biomedical research facility

    Get PDF
    For the University of New Mexico.July 1979.CER79-80JEC-RLP-SSA18.Includes bibliographical references

    Traitement d'effluents de tannerie-mégisserie par microfiltration tangentielle

    Get PDF
    Dans ce travail un procĂ©dĂ© de traitement des effluents issus de l'unitĂ© de prĂ©paration des peaux des animaux au tannage (travail en riviĂšre) en tannerie-mĂ©gisserie a Ă©tĂ© Ă©tudiĂ© en utilisant la technique de microfiltration tangentielle sur membrane minĂ©rale en cĂ©ramique. Les performances de ce procĂ©dĂ© en terme de flux de filtration et de rendement Ă©puratoire dĂ©pendent aussi bien des paramĂštres hydrodynamiques de filtration que de la qualitĂ© des effluents (collectĂ©s en Ă©tĂ© et en printemps) issus des diffĂ©rents bains de traitement et de rinçage des peaux dans l'atelier de riviĂšre. Le flux de filtration varie entre 15 l/h.m2 pour l'effluent de printemps et 90 l/h.m2 pour l'effluent d'Ă©tĂ©. Les paramĂštres hydrodynamiques optimaux ont Ă©galement Ă©tĂ© dĂ©terminĂ©s: la vitesse de circulation U=3 m/s, la pression transmembranaire Ptm=2 bar et la tempĂ©rature T=43°C. L'Ă©tude de la microfiltration Ă  concentration variable conduit Ă  des facteurs de concentration volumique (FCV) de 6,5 pour l'effluent de l'Ă©tĂ© et de 2,4 pour l'effluent de printemps.The leather industry is responsible for the transformation of raw animal skin to a final form as shoes, bags, dresses, etc. This industry was known for centuries as a craft activity, and today with industrial development, environmental regulations and new emerging technologies, it has become necessary to include elaborate processes for its wastewater treatment. These industries consume a great amount of water. In Tunisia, more than 15000 tons of skin are treated per year, and about 600000 m3 per year of effluents are discharged. The waste water contains chemicals, fats, hair and protein, varying in composition depending on the season. Figure 1 represents the preparation of raw skin for the tanning operation and the amount of waste water produced. The amount of water used for the preparation of raw skin is about 70% of the total quantity of water used. This waste water has a significant polluting load (chemicals and organic matter), with 5000 - 7500 mg/l of COD and 100 to 150 mg/l of sulfur. Tunisian legislation and regulations concerning the standards for wastewater disposal are 1000 mg/l for COD, 3 mg/l for sulfur and a pH between 6.5-9. Different techniques for wastewater treatment such as: physico-chemical treatment, treatment by electrochemical oxidation and membrane technology were proposed. Wastewater treatment by microfiltration and ultrafiltration with mineral membranes is advantageous because no chemicals are used and it can be combined easily with other physico-chemical or biological pre-treatments. In this study, we have treated two types of effluents from the leather pre-treatment industry collected in the summer (effluent 1), and the spring (effluent 2) seasons. The physico-chemical characteristics of the two types effluents are given in Table 2. The filtration experiments were made on a test bench (Figure 2) equipped with a feed reservoir, a volumetric pump, a filtration module, flow meter, pressure transducers, a heat exchanger and control valves. Ceramic membranes of tubular geometry (7 channels), 0.08 m2 membrane surface area and of 0.1 ”m (mean diameter) pores were used. During the microfiltration experiments, the following physico-chemical parameters were analysed in the permeate and retentate: turbidity, specific conductivity, pH, viscosity, chemical oxygen demand (COD), sulfur (volumetric method), fats (Standard JIS 0102.24.2), protein (using Kjeldahl nitrogen), and organic nitrogen. Hydrodynamic parameters such as temperature (25 < T < 50 °C), transmembrane pressure (1 < Ptm < 2.2 bar) and feed velocity (1 < U < 3 m/s) were fixed for experimentation. The COD concentration in the effluent was adjusted and kept constant at 5000 mg/l. The raw effluent was pre-filtered on a screen filter (150 ”m pore size). For experiments with variable concentration, we regularly removed the filtrate and the concentration factor was represented by FCV=Vi / Vr, where Vi was the initial volume and Vr was the volume of the retentate. The performance of the microfiltration (J) was expressed in l/h×m2. The retention rate (TR) was defined by: TR=1 - (Cpermeate) / (Cfeed). The total hydraulic resistance (RT) was defined by Darcy's law: Jf=Ptm / ” RT. After each experiment, the membrane was regenerated following a standard protocol and it was verified by measuring water flux. Figure 3a represents the variation of the filtration flux with time for 4 different temperatures: 25 °C, 43 °C, 45 °C and 50 °C with effluent 1. The flux increased from 90 to 118 l/h×m2 when the temperature increased from 25 °C to 43 °C. After 90 min at 50 °C, the filtration flux was 123 l/h×m2. Table 3 shows that the viscosity of the effluent decreased with temperature, while the turbidity of the filtrate increased from 0.63 NTU at T=25 °C to 1.6 NTU for T=50 °C. The retention rate of COD was always superior to 50 %. On the basis of these results, we chose the optimum temperature of 43 °C for other experiments. Figure 4 summarises the variation of flux with transmembrane pressure at flow velocities of 1 m/s, 2 m/s and 3 m/s. The stabilized fluxes were practically the same for the flow velocities of 1 and 2 m/s (of the order of 80 l/h×m2), but were higher at 3 m/s (110 - 115 l/h×m2 at 2 bar). The physico-chemical characteristics of the raw effluent and the permeate obtained after 90 minutes of filtration are summarised in Table 4. Figure 7a shows the variation of filtration flux for 2 types of effluents. The filtration flux for the same conditions of experimentation and at stabilized conditions (at 90 min) was 118 l/h×m2 for effluent 1 and 20 l/h×m2 for effluent 2. The lower filtration flux for effluent 2 can be explained by high deposits of rejected matter on the membrane and in the pores. Table 5 gives a comparison of the characteristics of effluents 1 and 2 before and after microfiltration. At variable feed concentrations, FCV=6.5 for effluent 1 and FCV=2.4 for the effluent 2 and the stabilized flux was about 90 l/h×m2 for the effluent 1 and 15 l/h×m2 for the effluent 2. The time needed for treatment of effluent 1 was about 6 hours, while more that 16 hours was necessary for effluent 2. Table 6 provides physico-chemical characteristics for the two types of effluents. The contents of fat, protein, nitrogen and sulfur in the effluent were important factors for variation. These results indicate that microfiltration is very sensitive to the quantity of polluting matter present in the effluents, particularly sulfur and fat. Increased polluting matter in effluent 2 could be responsible for the membrane polarization and blocking of pores. The resistance model was used to verify this hypothesis. The irreversible resistance values for effluent 2 were greater, thus confirming the hypothesis that the increased adsorption on the membrane surface and passage of pores by the presence of sulfur and organic polluting matter. These experimental results confirm that the best performance can be obtained at the hydrodynamic conditions of: a temperature of 43 °C; a transmembrane pressure of 2 bar; and a flow velocity of 3 m/s. Seasonal variation changed the quality of effluents, which considerably affects the performances of the microfiltration. Effluent 2, which was obtained from the treatment of sheep skin during the spring season, led to more membrane pore blocking than effluent 1 for the same initial concentration in COD. The interactions of fats and sulfur with the membrane layer appear to play an important role in the formation of a cake layer

    From Dynamic Modeling to Experimentation of Induction Motor Powered by Doubly-Fed Induction Generator by Passivity-Based Control

    Get PDF
    ISBN: 978-953-307-548-8DFIG wind turbines are nowadays more widely used especially in large wind farms. The main reason for their popularity when connected to the electrical network is their ability to supply power at constant voltage and frequency while the rotor speed varies, which makes it suitable for applications with variable speed. We consider in this paper the isolated operation of a DFIG driven by a prime mover, with its stator connected to a load--which is in this case an IM. This paper presents a dynamic model of the DFIG-IM and proves that this system is Blondel-Park transformable. It is also shown that the zero dynamics is unstable for a certain operating regime. We propose and analyse different strategies for the control of the whole system mainly based on Passivity Based Control (PBC). Several of them have been implemented on a 200W DFIG interconnected with an IM prototype available in IRII-UPC (Institute of Robotics and Industrial Informatics - UPC - Barcelona). The main disadvantage of the DFIG is the slip rings, which reduce the life time of the machine and increases the maintenance costs. To overcome this drawback an alternative machine arrangement is proposed which is the Brushless Doubly Fed twin Induction Generator (BDFTIG). The system is anticipated as an advanced solution to the conventional doubly fed induction generator (DFIG). The proposed BDFTIG employs two cascaded induction machines each consisting of two wound rotors, connected in cascade to eliminate the brushes and copper rings in the DFIG. The dynamic model of BDFTIG with two machines' rotors electromechanically coupled in the back-to-back configuration is developed and implemented using Matlab/Simulink

    Carbon dioxide adsorption and interaction with formation fluids of Jordanian unconventional reservoirs

    Get PDF
    Shales are mostly unexploited energy resources. However, the extraction and production of their hydrocarbons require innovative methods. Applications involving carbon dioxide in shales could combine its potential use in oil recovery with its storage in view of its impact on global climate. The success of these approaches highly depends on various mechanisms taking place in the rock pores simultaneously. In this work, properties governing these mechanisms are presented at technically relevant conditions. The pendant and sessile drop methods are utilized to measure interfacial tension and wettability, respectively. The gravimetric method is used to quantify CO2 adsorption capacity of shale and gas adsorption kinetics is evaluated to determine diffusion coefficients. It is found that interfacial properties are strongly affected by the operating pressure. The oil-CO2 interfacial tension shows a decrease from approx. 21 mN/m at 0.1 MPa to around 3 mN/m at 20 MPa. A similar trend is observed in brine-CO2 systems. The diffusion coefficient is observed to slightly increase with pressure at supercritical conditions. Finally, the contact angle is found to be directly related to the gas adsorption at the rock surface: Up to 3.8 wt% of CO2 is adsorbed on the shale surface at 20 MPa and 60 °C where a maximum in contact angle is also found. To the best of the author’s knowledge, the affinity of calcite-rich surfaces toward CO2 adsorption is linked experimentally to the wetting behavior for the first time. The results are discussed in terms of CO2 storage scenarios occurring optimally at 20 MPa

    Immunostaining in Mohs Micrographic Surgery: A Review

    Full text link
    With the advent of incorporating the immunoperoxidase staining technique into the processing of frozen tissue, the use of Mohs micrographic surgery (MMS) has been expanded to include several high-risk tumors such as lentigo maligna, malignant melanoma, and dermatofibrosarcoma protuberans.To thoroughly review the English medical literature pertaining to the use of immunohistochemical staining techniques on frozen sections during MMS and to summarize the basic relevant outcomes from the different relevant studies.Medline search was conducted, with the following words used in the search criteria: “Mohs surgery,”“staining,”“immunostaining,” and “immunoperoxidase.”Generally, all immunostains showed advantage over the traditional hematoxylin and eosin approach. Studies of MART-1 in melanoma chemosurgery indicated that it is typically crisp and has less background staining than MEL-5 and better staining consistency than HMB-45. In cases of desmoplastic melanomas, S100 is the stain of choice.Immunostaining offers an advantage in MMS. Large, randomized, prospective studies comparing the different immunostains are still lacking in the literature. The authors have indicated no significant interest with commercial supporters.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79305/1/j.1524-4725.2009.01432.x.pd

    Adaption of Wheat Genotypes to Drought Stress

    Full text link
    Drought can serve to restrict the growth and development of wheat. The current research was conducted to screen for drought-tolerant wheat genotypes through phenotypic markers, including growth indicators and yield. We used a Randomized Complete Block (RCB) design with three replicate sites (about333 m2 area per replicate). Six wheat genotypes which are frequently grown under rain-fed conditions at the southern highland of West-Bank, Palestine were evaluated for specific phenotypes including stem length, spike with awns length, awns length, number of tillers, total grain, total hay, and mass of seeds (per 100). The results showed significant variations among the six wheat genotypes for most of the measured parameters. Yellow-Hetia genotype showed the highest stem length, spike with awns length, awns length, weight of 100 seeds, and yield (grain plus hay). However, the remaining genotypes presented almost similar production ranging from 475-488 kg/dunum. In contrary, Nab-El-Jamal genotype exhibited the lowest grain production and Um-El-Rabee' genotype revealed the minimum hay production. Based on our data, Yellow-Hetia could be a promising cultivar for future breeding programs, especially those involving drought tolerance
    • 

    corecore