1,979 research outputs found

    The emergence of magnetic flux through a partially ionised solar atmosphere

    Get PDF
    We present results from 2.5D numerical simulations of the emergence of magnetic flux from the upper convection zone through the photosphere and chromosphere into the corona. Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised, in particular the lower chromosphere. This leads to Cowling resistivities orders of magnitude larger than the Coulomb values, and thus to anisotropic dissipation in Ohm’s law. This also leads to localised low magnetic Reynolds numbers (R m < 1). We find that the rates of emergence of magnetic field are greatly increased by the partially ionised regions of the model atmosphere, and the resultant magnetic field is more diffuse. More importantly, the only currents associated with the magnetic field to emerge into the corona are aligned with the field, and thus the newly formed coronal field is force-free

    Leakage of waves from coronal loops by wave tunneling

    Get PDF
    To better understand the decay of vertically polarised fast kink modes of coronal loops by the mechanism of wave tunneling, simulations are performed of fast kink modes in straight flux slabs which have Alfvén speed profiles which include a tunneling region. The decay rates are found to be determined by the mode number of the trapped mode and the thickness of the tunneling region. Two analytical models are suggested to explain the observed decay. The first is a extension of the work of Roberts (1981, Sol. Phys., 69, 39) to include a finite thickness tunneling region, and the second is a simpler model which yields an analytical solution for the relationship between decay rate, period and the thickness of the tunneling region. The decay rates for these straight slabs are found to be slower than in observations and those found in a previous paper on the subject by Brady & Arber (2005, A&A, 438, 733) using curved flux slabs. It is found that the difference between the straight slabs used here and the curved slabs used in Brady & Arber (2005, A&A, 438, 733) can be represented as a geometric correction to the decay rate

    Heating of the magnetized solar chromosphere by partial ionization effects

    Full text link
    In this paper, we study the heating of the magnetized solar chromosphere induced by the large fraction of neutral atoms present in this layer. The presence of neutrals, together with the decrease with height of the collisional coupling, leads to deviations from the classical MHD behavior of the chromospheric plasma. A relative net motion appears between the neutral and ionized components, usually referred to as ambipolar diffusion. The dissipation of currents in the chromosphere is enhanced orders of magnitude due to the action of ambipolar diffusion, as compared to the standard ohmic diffusion. We propose that a significant amount of magnetic energy can be released to the chromosphere just by existing force-free 10--40 G magnetic fields there. As a consequence, we conclude that ambipolar diffusion is an important process that should be included in chromospheric heating models, as it has the potential to rapidly heat the chromosphere. We perform analytical estimations and numerical simulations to prove this idea.Comment: Accepted for publication by The Astrophysical Journa

    On the Synanthy in the Genus Lonicera.

    Get PDF
    n/

    Stabilisation of BGK modes by relativistic effects

    Get PDF
    Context. We examine plasma thermalisation processes in the foreshock region of astrophysical shocks within a fully kinetic and self-consistent treatment. We concentrate on proton beam driven electrostatic processes, which are thought to play a key role in the beam relaxation and the particle acceleration. Our results have implications for the effectiveness of electron surfing acceleration and the creation of the required energetic seed population for first order Fermi acceleration at the shock front. Aims. We investigate the acceleration of electrons via their interaction with electrostatic waves, driven by the relativistic Buneman instability, in a system dominated by counter-propagating proton beams. Methods. We adopt a kinetic Vlasov-Poisson description of the plasma on a fixed Eulerian grid and observe the growth and saturation of electrostatic waves for a range of proton beam velocities, from 0.15c to 0.9c. Results. We can report a reduced stability of the electrostatic wave (ESW) with increasing non-relativistic beam velocities and an improved wave stability for increasing relativistic beam velocities, both in accordance with previous findings. At the highest beam speeds, we find the system to be stable again for a period of ≈160 plasma periods. Furthermore, the high phase space resolution of the Eulerian Vlasov approach reveals processes that could not be seen previously with PIC simulations. We observe a, to our knowledge, previously unreported secondary electron acceleration mechanism at low beam speeds. We believe that it is the result of parametric couplings to produce high phase velocity ESW’s which then trap electrons, accelerating them to higher energies. This allows electrons in our simulation study to achieve the injection energy required for Fermi acceleration, for beam speeds as low as 0.15c in unmagnetised plasma

    Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime

    Get PDF
    The highly dynamical, complex nature of the solar atmosphere naturally implies the presence of waves in a topologically varied magnetic environment. Here, the interaction of waves with topological features such as null points is inevitable and potentially important for energetics. The low resistivity of the solar coronal plasma implies that non-MHD effects should be considered in studies of magnetic energy release in this environment. This paper investigates the role of the Hall term in the propagation and dissipation of waves, their interaction with 2D magnetic X-points and the nature of the resulting reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Depending on the ratio of ion skin depth to system size, our model demonstrates that Hall effects can play a key role in the wave-null interaction. In particular, the initial fast-wave pulse now consists of whistler and ion-cyclotron components; the dispersive nature of the whistler wave leads to (i) earlier interaction with the null, (ii) the creation of multiple additional, transient nulls and, hence, an increased number of energy release sites. In the Hall regime, the relevant timescales (such as the onset of reconnection and the period of the oscillatory relaxation) of the system are reduced significantly, and the reconnection rate is enhanced.Comment: 13 pages, 10 figure

    Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere

    Get PDF
    Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so that the main damping mechanism in this region is due to the collisions between neutrals and positive ions (Khodachenko et al. 2004, A&A, 422, 1073). Using values for the gas density and temperature as functions of height taken from the VAL C model of the quiet Sun (Vernazza et al. 1981, ApJS, 45, 635), an estimate is made for the dependance of the Cowling conductivity on height and strength of magnetic field. Using both analytic and numerical approaches the passage of Alfvén waves over a wide spectrum through this partially ionised region is investigated. Estimates of the efficiency of this region in the damping of Alfvén waves are made and compared for both approaches. We find that Alfvén waves with frequencies above 0.6 Hz are completely damped and frequencies below 0.01 Hz unaffected

    Tests of Dynamical Flux Emergence as a Mechanism for CME Initiation

    Full text link
    Current coronal mass ejection (CME) models set their lower boundary to be in the lower corona. They do not calculate accurately the transfer of free magnetic energy from the convection zone to the magnetically dominated corona because they model the effects of flux emergence using kinematic boundary conditions or simply assume the appearance of flux at these heights. We test the importance of including dynamical flux emergence in CME modeling by simulating, in 2.5D, the emergence of sub-surface flux tubes into different coronal magnetic field configurations. We investigate how much free magnetic energy, in the form of shear magnetic field, is transported from the convection zone to the corona, and whether dynamical flux emergence can drive CMEs. We find that multiple coronal flux ropes can be formed during flux emergence, and although they carry some shear field into the corona, the majority of shear field is confined to the lower atmosphere. Less than 10% of the magnetic energy in the corona is in the shear field, and this, combined with the fact that the coronal flux ropes bring up significant dense material, means that they do not erupt. Our results have significant implications for all CME models which rely on the transfer of free magnetic energy from the lower atmosphere into the corona but which do not explicitly model this transfer. Such studies of flux emergence and CMEs are timely, as we have new capabilities to observe this with Hinode and SDO, and therefore to test the models against observations

    Evaluation de la stratégie d’élimination de la rougeole 2011-2015

    Get PDF
    La stratégie d’élimination de la rougeole 2011-2015 élaborée et mise en oeuvre par l’OFSP a été évaluée en utilisant diverses approches méthodologiques complémentaires. Les principaux résultats montrent qu’un large consensus sur la stratégie a été obtenu sous l’impulsion de l’OFSP et que tous les cantons ont mis en oeuvre des mesures visant à augmenter la couverture vaccinale. Une augmentation de la couverture vaccinale, du rattrapage vaccinal et une réduction des disparités cantonales de couverture vaccinale ont été observées. Cependant l’objectif stratégique de couverture vaccinale 2 doses à l’âge de 2 ans n’a pas été obtenu dans tous les cantons pour lesquels on dispose d’une mesure en 2014-2015. Il est probable que la stratégie n’a pas encore déployé tous ses effets. Les mesures mises en oeuvre pour prévenir et contenir les flambées épidémiques et qui visent à augmenter la couverture vaccinale devraient être poursuivies

    Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop

    Get PDF
    We propose a new model for quasi-periodic modulation of solar and stellar flaring emission. Fast magnetoacoustic oscillations of a non-flaring loop can interact with a nearby flaring active region. This interaction occurs when part of the oscillation situated outside the loop reaches the regions of steep gradients in magnetic field within an active region and produces periodic variations of electric current density. The modulation depth of these variations is a few orders of magnitude greater than the amplitude of the driving oscillation. The variations of the current can induce current-driven plasma micro-instabilities and thus anomalous resistivity. This can periodically trigger magnetic reconnection, and hence acceleration of charged particles, producing quasi-periodic pulsations of X-ray, optical and radio emission at the arcade footpoints
    corecore