840 research outputs found
Inhomogeneous Anisotropic Passive Scalars
We investigate the behaviour of the two-point correlation function in the
context of passive scalars for non homogeneous, non isotropic forcing
ensembles. Exact analytical computations can be carried out in the framework of
the Kraichnan model for each anisotropic sector. It is shown how the
homogeneous solution is recovered at separations smaller than an intrinsic
typical lengthscale induced by inhomogeneities, and how the different Fourier
modes in the centre-of-mass variable recombine themselves to give a ``beating''
(superposition of power laws) described by Bessel functions. The pure power-law
behaviour is restored even if the inhomogeneous excitation takes place at very
small scales.Comment: 14 pages, 5 figure
Completeness of classical spin models and universal quantum computation
We study mappings between distinct classical spin systems that leave the
partition function invariant. As recently shown in [Phys. Rev. Lett. 100,
110501 (2008)], the partition function of the 2D square lattice Ising model in
the presence of an inhomogeneous magnetic field, can specialize to the
partition function of any Ising system on an arbitrary graph. In this sense the
2D Ising model is said to be "complete". However, in order to obtain the above
result, the coupling strengths on the 2D lattice must assume complex values,
and thus do not allow for a physical interpretation. Here we show how a
complete model with real -and, hence, "physical"- couplings can be obtained if
the 3D Ising model is considered. We furthermore show how to map general
q-state systems with possibly many-body interactions to the 2D Ising model with
complex parameters, and give completeness results for these models with real
parameters. We also demonstrate that the computational overhead in these
constructions is in all relevant cases polynomial. These results are proved by
invoking a recently found cross-connection between statistical mechanics and
quantum information theory, where partition functions are expressed as quantum
mechanical amplitudes. Within this framework, there exists a natural
correspondence between many-body quantum states that allow universal quantum
computation via local measurements only, and complete classical spin systems.Comment: 43 pages, 28 figure
Universality and saturation of intermittency in passive scalar turbulence
The statistical properties of a scalar field advected by the non-intermittent
Navier-Stokes flow arising from a two-dimensional inverse energy cascade are
investigated. The universality properties of the scalar field are directly
probed by comparing the results obtained with two different types of injection
mechanisms. Scaling properties are shown to be universal, even though
anisotropies injected at large scales persist down to the smallest scales and
local isotropy is not fully restored. Scalar statistics is strongly
intermittent and scaling exponents saturate to a constant for sufficiently high
orders. This is observed also for the advection by a velocity field rapidly
changing in time, pointing to the genericity of the phenomenon. The persistence
of anisotropies and the saturation are both statistical signatures of the
ramp-and-cliff structures observed in the scalar field.Comment: 4 pages, 8 figure
Drag Reduction by Polymers in Turbulent Channel Flows: Energy Redistribution Between Invariant Empirical Modes
We address the phenomenon of drag reduction by dilute polymeric additive to
turbulent flows, using Direct Numerical Simulations (DNS) of the FENE-P model
of viscoelastic flows. It had been amply demonstrated that these model
equations reproduce the phenomenon, but the results of DNS were not analyzed so
far with the goal of interpreting the phenomenon. In order to construct a
useful framework for the understanding of drag reduction we initiate in this
paper an investigation of the most important modes that are sustained in the
viscoelastic and Newtonian turbulent flows respectively. The modes are obtained
empirically using the Karhunen-Loeve decomposition, allowing us to compare the
most energetic modes in the viscoelastic and Newtonian flows. The main finding
of the present study is that the spatial profile of the most energetic modes is
hardly changed between the two flows. What changes is the energy associated
with these modes, and their relative ordering in the decreasing order from the
most energetic to the least. Modes that are highly excited in one flow can be
strongly suppressed in the other, and vice versa. This dramatic energy
redistribution is an important clue to the mechanism of drag reduction as is
proposed in this paper. In particular there is an enhancement of the energy
containing modes in the viscoelastic flow compared to the Newtonian one; drag
reduction is seen in the energy containing modes rather than the dissipative
modes as proposed in some previous theories.Comment: 11 pages, 13 figures, included, PRE, submitted, REVTeX
Scaling and universality in turbulent convection
Anomalous correlation functions of the temperature field in two-dimensional
turbulent convection are shown to be universal with respect to the choice of
external sources. Moreover, they are equal to the anomalous correlations of the
concentration field of a passive tracer advected by the convective flow itself.
The statistics of velocity differences is found to be universal, self-similar
and close to Gaussian. These results point to the conclusion that temperature
intermittency in two-dimensional turbulent convection may be traced back to the
existence of statistically preserved structures, as it is in passive scalar
turbulence.Comment: 4 pages, 6 figure
Quantitative SPECT/CT parameters of myocardial 99mTechnetium-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) uptake in suspected cardiac transthyretin amyloidosis
Background: 99mTc-labelled bisphosphonates are used for imaging assessment of patients with transthyretin cardiac amyloidosis (ATTR). Present study evaluates whether quantitative SPECT/CT measurement of absolute myocardial 99mTc-labelled 3,3-diphosphono-1,2-propanodicarboxylic acid (Tc-DPD) uptake can diagnose patients with suspected ATTR. / Methods: Twenty-eight patients (25 male, age 80.03 ± 6.99 years) with suspected ATTR referred for Tc-DPD imaging had planar and SPECT/CT imaging of the chest. Three operators independently obtained Tc-DPD myocardial SUVmax and SUVmean above threshold (SMaT) (20, 40 and 60% of SUVmax), using a semi-automated threshold segmentation method. Results were compared to visual grading (0–3) of cardiac uptake. / Results: Twenty-two patients (78%) had cardiac uptake (2 grade 1, 15 grade 2, 5 grade 3). SUVmax and SMaT segmentation thresholds enabled separating grades 2/3 from 0/1 with excellent inter- and intra-reader correlation. Cut-off values 6.0, 2.5, 3 and 4 for SUVmax, SMaT20,40,60, respectively, separated between grades 2/3 and 0 /1 with PPV and NPV of 100%. SMaT20,40,60(cardiac)/SUVmean (liver) and SMaT20,40,60(cardiac)/SUVmean(liver/lung) separated grades 2 and 3. / Conclusion: Quantitative SPECT/CT parameters of cardiac Tc-DPD uptake are robust, enabling separation of patients with grades 2 and 3 cardiac uptake from grades 0 and 1. Larger patient cohorts will determine the incremental value of SPECT/CT quantification for ATTR management
Turbulence anisotropy and the SO(3) description
We study strongly turbulent windtunnel flows with controlled anisotropy. Using a recent formalism based on angular momentum and the irreducible representations of the SO(3) rotation group, we attempt to extract this anisotropy from the angular dependence of second-order structure functions. Our instrumentation allows a measurement of both the separation and the angle dependence of the structure function. In axisymmetric turbulence which has a weak anisotropy, this more extended information produces ambiguous results. In more strongly anisotropic shear turbulence, the SO(3) description enables one to find the anisotropy scaling exponent. The key quality of the SO(3) description is that structure functions are a mixture of algebraic functions of the scale with exponents ordered such that the contribution of anisotropies diminishes at small scales. However, we find that in third-order structure functions of homogeneous shear turbulence the anisotropic contribution is always large and of the same order of magnitude as the isotropic part. Our results concern the minimum instrumentation needed to determine the parameters of the SO(3) description, and raise several questions about its ability to describe the angle dependence of high-order structure functions
Statistical Physics of Fracture Surfaces Morphology
Experiments on fracture surface morphologies offer increasing amounts of data
that can be analyzed using methods of statistical physics. One finds scaling
exponents associated with correlation and structure functions, indicating a
rich phenomenology of anomalous scaling. We argue that traditional models of
fracture fail to reproduce this rich phenomenology and new ideas and concepts
are called for. We present some recent models that introduce the effects of
deviations from homogeneous linear elasticity theory on the morphology of
fracture surfaces, succeeding to reproduce the multiscaling phenomenology at
least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel
methods of analysis based on projecting the data on the irreducible
representations of the SO(2) symmetry group. It appears that this approach
organizes effectively the rich scaling properties. We end up with the
proposition of new experiments in which the rotational symmetry is not broken,
such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy
Statistical geometry in scalar turbulence
A general link between geometry and intermittency in passive scalar
turbulence is established. Intermittency is qualitatively traced back to events
where tracer particles stay for anomalousy long times in degenerate geometries
characterized by strong clustering. The quantitative counterpart is the
existence of special functions of particle configurations which are
statistically invariant under the flow. These are the statistical integrals of
motion controlling the scalar statistics at small scales and responsible for
the breaking of scale invariance associated to intermittency.Comment: 4 pages, 5 figure
- …