840 research outputs found

    Leaf Water Content and Hormone Effects on Ribonuclease Activity

    Full text link

    Inhomogeneous Anisotropic Passive Scalars

    Full text link
    We investigate the behaviour of the two-point correlation function in the context of passive scalars for non homogeneous, non isotropic forcing ensembles. Exact analytical computations can be carried out in the framework of the Kraichnan model for each anisotropic sector. It is shown how the homogeneous solution is recovered at separations smaller than an intrinsic typical lengthscale induced by inhomogeneities, and how the different Fourier modes in the centre-of-mass variable recombine themselves to give a ``beating'' (superposition of power laws) described by Bessel functions. The pure power-law behaviour is restored even if the inhomogeneous excitation takes place at very small scales.Comment: 14 pages, 5 figure

    Completeness of classical spin models and universal quantum computation

    Full text link
    We study mappings between distinct classical spin systems that leave the partition function invariant. As recently shown in [Phys. Rev. Lett. 100, 110501 (2008)], the partition function of the 2D square lattice Ising model in the presence of an inhomogeneous magnetic field, can specialize to the partition function of any Ising system on an arbitrary graph. In this sense the 2D Ising model is said to be "complete". However, in order to obtain the above result, the coupling strengths on the 2D lattice must assume complex values, and thus do not allow for a physical interpretation. Here we show how a complete model with real -and, hence, "physical"- couplings can be obtained if the 3D Ising model is considered. We furthermore show how to map general q-state systems with possibly many-body interactions to the 2D Ising model with complex parameters, and give completeness results for these models with real parameters. We also demonstrate that the computational overhead in these constructions is in all relevant cases polynomial. These results are proved by invoking a recently found cross-connection between statistical mechanics and quantum information theory, where partition functions are expressed as quantum mechanical amplitudes. Within this framework, there exists a natural correspondence between many-body quantum states that allow universal quantum computation via local measurements only, and complete classical spin systems.Comment: 43 pages, 28 figure

    Universality and saturation of intermittency in passive scalar turbulence

    Full text link
    The statistical properties of a scalar field advected by the non-intermittent Navier-Stokes flow arising from a two-dimensional inverse energy cascade are investigated. The universality properties of the scalar field are directly probed by comparing the results obtained with two different types of injection mechanisms. Scaling properties are shown to be universal, even though anisotropies injected at large scales persist down to the smallest scales and local isotropy is not fully restored. Scalar statistics is strongly intermittent and scaling exponents saturate to a constant for sufficiently high orders. This is observed also for the advection by a velocity field rapidly changing in time, pointing to the genericity of the phenomenon. The persistence of anisotropies and the saturation are both statistical signatures of the ramp-and-cliff structures observed in the scalar field.Comment: 4 pages, 8 figure

    Drag Reduction by Polymers in Turbulent Channel Flows: Energy Redistribution Between Invariant Empirical Modes

    Full text link
    We address the phenomenon of drag reduction by dilute polymeric additive to turbulent flows, using Direct Numerical Simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag reduction we initiate in this paper an investigation of the most important modes that are sustained in the viscoelastic and Newtonian turbulent flows respectively. The modes are obtained empirically using the Karhunen-Loeve decomposition, allowing us to compare the most energetic modes in the viscoelastic and Newtonian flows. The main finding of the present study is that the spatial profile of the most energetic modes is hardly changed between the two flows. What changes is the energy associated with these modes, and their relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an important clue to the mechanism of drag reduction as is proposed in this paper. In particular there is an enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag reduction is seen in the energy containing modes rather than the dissipative modes as proposed in some previous theories.Comment: 11 pages, 13 figures, included, PRE, submitted, REVTeX

    Scaling and universality in turbulent convection

    Full text link
    Anomalous correlation functions of the temperature field in two-dimensional turbulent convection are shown to be universal with respect to the choice of external sources. Moreover, they are equal to the anomalous correlations of the concentration field of a passive tracer advected by the convective flow itself. The statistics of velocity differences is found to be universal, self-similar and close to Gaussian. These results point to the conclusion that temperature intermittency in two-dimensional turbulent convection may be traced back to the existence of statistically preserved structures, as it is in passive scalar turbulence.Comment: 4 pages, 6 figure

    Quantitative SPECT/CT parameters of myocardial 99mTechnetium-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) uptake in suspected cardiac transthyretin amyloidosis

    Get PDF
    Background: 99mTc-labelled bisphosphonates are used for imaging assessment of patients with transthyretin cardiac amyloidosis (ATTR). Present study evaluates whether quantitative SPECT/CT measurement of absolute myocardial 99mTc-labelled 3,3-diphosphono-1,2-propanodicarboxylic acid (Tc-DPD) uptake can diagnose patients with suspected ATTR. / Methods: Twenty-eight patients (25 male, age 80.03 ± 6.99 years) with suspected ATTR referred for Tc-DPD imaging had planar and SPECT/CT imaging of the chest. Three operators independently obtained Tc-DPD myocardial SUVmax and SUVmean above threshold (SMaT) (20, 40 and 60% of SUVmax), using a semi-automated threshold segmentation method. Results were compared to visual grading (0–3) of cardiac uptake. / Results: Twenty-two patients (78%) had cardiac uptake (2 grade 1, 15 grade 2, 5 grade 3). SUVmax and SMaT segmentation thresholds enabled separating grades 2/3 from 0/1 with excellent inter- and intra-reader correlation. Cut-off values 6.0, 2.5, 3 and 4 for SUVmax, SMaT20,40,60, respectively, separated between grades 2/3 and 0 /1 with PPV and NPV of 100%. SMaT20,40,60(cardiac)/SUVmean (liver) and SMaT20,40,60(cardiac)/SUVmean(liver/lung) separated grades 2 and 3. / Conclusion: Quantitative SPECT/CT parameters of cardiac Tc-DPD uptake are robust, enabling separation of patients with grades 2 and 3 cardiac uptake from grades 0 and 1. Larger patient cohorts will determine the incremental value of SPECT/CT quantification for ATTR management

    Turbulence anisotropy and the SO(3) description

    Get PDF
    We study strongly turbulent windtunnel flows with controlled anisotropy. Using a recent formalism based on angular momentum and the irreducible representations of the SO(3) rotation group, we attempt to extract this anisotropy from the angular dependence of second-order structure functions. Our instrumentation allows a measurement of both the separation and the angle dependence of the structure function. In axisymmetric turbulence which has a weak anisotropy, this more extended information produces ambiguous results. In more strongly anisotropic shear turbulence, the SO(3) description enables one to find the anisotropy scaling exponent. The key quality of the SO(3) description is that structure functions are a mixture of algebraic functions of the scale with exponents ordered such that the contribution of anisotropies diminishes at small scales. However, we find that in third-order structure functions of homogeneous shear turbulence the anisotropic contribution is always large and of the same order of magnitude as the isotropic part. Our results concern the minimum instrumentation needed to determine the parameters of the SO(3) description, and raise several questions about its ability to describe the angle dependence of high-order structure functions

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Statistical geometry in scalar turbulence

    Full text link
    A general link between geometry and intermittency in passive scalar turbulence is established. Intermittency is qualitatively traced back to events where tracer particles stay for anomalousy long times in degenerate geometries characterized by strong clustering. The quantitative counterpart is the existence of special functions of particle configurations which are statistically invariant under the flow. These are the statistical integrals of motion controlling the scalar statistics at small scales and responsible for the breaking of scale invariance associated to intermittency.Comment: 4 pages, 5 figure
    • …
    corecore