59 research outputs found

    Vasopressors and Inotropes in the Treatment of Human Septic Shock: Effect on Innate Immunity?

    Get PDF
    Catecholamines have been suggested to modulate innate immune responses in experimental settings. The significance hereof in the treatment of human septic shock is unknown. We therefore sought if and how vasopressor/inotropic doses relate to pro-inflammatory mediators during treatment of septic shock. We prospectively studied 20 consecutive septic shock patients. For 3 days after admission, hemodynamic variables, lactate and plasma levels of interleukins (IL)-6 and 8, tumor necrosis factor (TNF)-α, and elastase-α1-antitrypsin were measured six hourly. Doses of vasoactive drugs were recorded. Of the 20 patients, nine died in the intensive care unit. Dobutamine doses were positively associated and related to TNF-α plasma levels, independently of disease severity, hemodynamics, and outcome, in multivariable models. Dopamine doses were positively associated with IL-6, and norepinephrine was inversely associated with IL-8 and TNF-α levels. Our observations suggest that catecholamines used in the treatment of human septic shock differ in their potential modulation of the innate immune response to sepsis in vivo. Dobutamine treatment may contribute to circulating TNF-α and dopamine to IL-6, independently of activated neutrophils. Conversely, norepinephrine may lack pro-inflammatory actions

    Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins

    Get PDF
    In the pharmaceutical industry, improving the early detection of drug-induced hepatotoxicity is essential as it is one of the most important reasons for attrition of candidate drugs during the later stages of drug development. The first objective of this study was to better characterize different cellular models (i.e., HepG2, HepaRG cells, and fresh primary human hepatocytes) at the gene expression level and analyze their metabolic cytochrome P450 capabilities. The cellular models were exposed to three different CYP450 inducers; beta-naphthoflavone (BNF), phenobarbital (PB), and rifampicin (RIF). HepG2 cells responded very weakly to the different inducers at the gene expression level, and this translated generally into low CYP450 activities in the induced cells compared with the control cells. On the contrary, HepaRG cells and the three human donors were inducible after exposure to BNF, PB, and RIF according to gene expression responses and CYP450 activities. Consequently, HepaRG cells could be used in screening as a substitute and/or in complement to primary hepatocytes for CYP induction studies. The second objective was to investigate the predictivity of the different cellular models to detect hepatotoxins (16 hepatotoxic and 5 nonhepatotoxic compounds). Specificity was 100% with the different cellular models tested. Cryopreserved human hepatocytes gave the highest sensitivity, ranging from 31% to 44% (depending on the donor), followed by lower sensitivity (13%) for HepaRG and HepG2 cells (6.3%). Overall, none of the models under study gave desirable sensitivities (80–100%). Consequently, a high metabolic capacity and CYP inducibility in cell lines does not necessarily correlate with a high sensitivity for the detection of hepatotoxic drugs. Further investigations are necessary to compare different cellular models and determine those that are best suited for the detection of hepatotoxic compounds

    Fungal planet description sheets: 951–1041

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica , Apenidiella antarctica from permafrost, Cladosporium fildesense fromanunidentifiedmarinesponge. Argentina , Geastrum wrightii onhumusinmixedforest. Australia , Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.)on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles , Lactifluus guanensis onsoil. Canada , Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna fromcarbonatiteinKarstcave. Colombia , Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae onwood. Cyprus , Clavulina iris oncalcareoussubstrate. France , Chromosera ambigua and Clavulina iris var. occidentalis onsoil. French West Indies , Helminthosphaeria hispidissima ondeadwood. Guatemala , Talaromyces guatemalensis insoil. Malaysia , Neotracylla pini (incl. Tracyllales ord. nov. and Neotra- cylla gen. nov.)and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan , Russula quercus-floribundae onforestfloor. Portugal , Trichoderma aestuarinum from salinewater. Russia , Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduouswoodorsoil. South Africa , Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.)onleavesof Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme , Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.)onleaflitterof Eugenia capensis , Cyphellophora goniomatis on leaves of Gonioma kamassi , Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.)onleavesof Nephrolepis exaltata , Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa , Harzia metro sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopota- myces gen. nov.)onleavesof Phragmites australis , Lectera philenopterae on Philenoptera violacea , Leptosillia mayteni on leaves of Maytenus heterophylla , Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata , Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai , Neokirramyces syzygii (incl. Neokirramyces gen. nov.)onleafspots o

    Current Industrial Practices in Assessing CYP450 Enzyme Induction: Preclinical and Clinical

    Get PDF
    Induction of drug metabolizing enzymes, such as the cytochromes P450 (CYP) is known to cause drug-drug interactions due to increased elimination of co-administered drugs. This increased elimination may lead to significant reduction or complete loss of efficacy of the co-administered drug. Due to the significance of such drug interactions, many pharmaceutical companies employ screening and characterization models which predict CYP enzyme induction to avoid or attenuate the potential for drug interactions with new drug candidates. The most common mechanism of CYP induction is transcriptional gene activation. Activation is mediated by nuclear receptors, such as AhR, CAR, and PXR that function as transcription factors. Early high throughput screening models utilize these nuclear hormone receptors in ligand binding or cell-based transactivation/reporter assays. In addition, immortalized hepatocyte cell lines can be used to assess enzyme induction of specific drug metabolizing enzymes. Cultured primary human hepatocytes, the best established in vitro model for predicting enzyme induction and most accepted by regulatory agencies, is the predominant assay used to evaluate induction of a wide variety of drug metabolizing enzymes. These in vitro models are able to appropriately predict enzyme induction in patients when compared to clinical drug-drug interactions. Finally, transgenic animal models and the cynomolgus monkey have also been shown to recapitulate human enzyme induction and may be appropriate in vivo animal models for predicting human drug interactions

    The Presidency and the Executive Branch in Latin America: What We Know and What We Need to Know

    Get PDF
    The presidential politics literature depicts presidents either as all- powerful actors or figureheads and seeks to explain outcomes accordingly. Th e president and the executive branch are nonetheless usually treated as black boxes, particularly i n developing countries, even though the presidency has evolved into an extremely complex branch of government. While these developments have been studied in the U nited States, far less i s known in other countries, particularly in Latin America, where presi dential systems have been considered the source of all goods and evils. To help close the knowledge gap and explore differences in policymaking characteristics not only between Latin America and the US but also across Latin American countries, this paper s ummarizes the vast literature on the organization and resources of the Executive Branch in the Americas and sets a research agenda for the study of Latin American presidencies.Fil: Bonvecchi, Alejandro. Universidad Torcuato Di Tella. Departamento de Ciencia Política y Estudios Internacionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scartascini, Juan Carlos. Banco Interamericano de Desarrollo; Estados Unido

    Fungal Planet description sheets : 951–1041

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica,Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina,Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera,Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbiaficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy onrotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae(incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannacciifrom pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongisporaon resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma cavernafrom carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. CostaRica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambiguaand Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood.Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracyllagen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyriumviticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiaeon Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum fromsaline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostromaencephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots ofEucalyptus grandis x urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficiumon leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter ofEugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl.Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladiumeucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp.macrocarpa, Harzia metro-sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamycesgen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosilliamayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloesp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesiastrelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam.nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicilliumcuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpusfalcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi,Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidiumblechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomycesknysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood ingoldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycinacortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensison dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litterof Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris.Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis onleaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomycesjuncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomycesmelaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides x lanceolata, Pseudocamarosporiumeucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascusturneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii onleaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological andculture characteristics are supported by DNA barcodes
    corecore