6,583 research outputs found
Influence of data type and rate on short arc lunar orbit determination
Error analysis for selecting optimum rates for taking counted doppler rate and range data for tracking short arc of lunar satellite orbi
Coordinate systems for differential correction
System of state transition partial derivatives for which tracking information normal matrix for lunar orbiter is nearly diagonalize
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
One technique to reduce the state-space explosion problem in temporal logic
model checking is symmetry reduction. The combination of symmetry reduction and
symbolic model checking by using BDDs suffered a long time from the
prohibitively large BDD for the orbit relation. Dynamic symmetry reduction
calculates representatives of equivalence classes of states dynamically and
thus avoids the construction of the orbit relation. In this paper, we present a
new efficient model checking algorithm based on dynamic symmetry reduction. Our
experiments show that the algorithm is very fast and allows the verification of
larger systems. We additionally implemented the use of state symmetries for
symbolic symmetry reduction. To our knowledge we are the first who investigated
state symmetries in combination with BDD based symbolic model checking
Convergence Conditions for Random Quantum Circuits
Efficient methods for generating pseudo-randomly distributed unitary
operators are needed for the practical application of Haar distributed random
operators in quantum communication and noise estimation protocols. We develop a
theoretical framework for analyzing pseudo-random ensembles generated through a
random circuit composition. We prove that the measure over random circuits
converges exponentially (with increasing circuit length) to the uniform (Haar)
measure on the unitary group and describe how the rate of convergence may be
calculated for specific applications.Comment: 4 pages (revtex), comments welcome. v2: reference added, title
changed; v3: published version, minor changes, references update
Model Checking CTL is Almost Always Inherently Sequential
The model checking problem for CTL is known to be P-complete (Clarke,
Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of
CTL obtained by restricting the use of temporal modalities or the use of
negations---restrictions already studied for LTL by Sistla and Clarke (1985)
and Markey (2004). For all these fragments, except for the trivial case without
any temporal operator, we systematically prove model checking to be either
inherently sequential (P-complete) or very efficiently parallelizable
(LOGCFL-complete). For most fragments, however, model checking for CTL is
already P-complete. Hence our results indicate that, in cases where the
combined complexity is of relevance, approaching CTL model checking by
parallelism cannot be expected to result in any significant speedup. We also
completely determine the complexity of the model checking problem for all
fragments of the extensions ECTL, CTL+, and ECTL+
Winning Cores in Parity Games
We introduce the novel notion of winning cores in parity games and develop a
deterministic polynomial-time under-approximation algorithm for solving parity
games based on winning core approximation. Underlying this algorithm are a
number properties about winning cores which are interesting in their own right.
In particular, we show that the winning core and the winning region for a
player in a parity game are equivalently empty. Moreover, the winning core
contains all fatal attractors but is not necessarily a dominion itself.
Experimental results are very positive both with respect to quality of
approximation and running time. It outperforms existing state-of-the-art
algorithms significantly on most benchmarks
Scalable Noise Estimation with Random Unitary Operators
We describe a scalable stochastic method for the experimental measurement of
generalized fidelities characterizing the accuracy of the implementation of a
coherent quantum transformation. The method is based on the motion reversal of
random unitary operators. In the simplest case our method enables direct
estimation of the average gate fidelity. The more general fidelities are
characterized by a universal exponential rate of fidelity loss. In all cases
the measurable fidelity decrease is directly related to the strength of the
noise affecting the implementation -- quantified by the trace of the
superoperator describing the non--unitary dynamics. While the scalability of
our stochastic protocol makes it most relevant in large Hilbert spaces (when
quantum process tomography is infeasible), our method should be immediately
useful for evaluating the degree of control that is achievable in any prototype
quantum processing device. By varying over different experimental arrangements
and error-correction strategies additional information about the noise can be
determined.Comment: 8 pages; v2: published version (typos corrected; reference added
Organ failure, outcomes and deprivation status among critically ill cirrhosis patients — a one-year cohort study
No abstract available
Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing
Being able to quantify the level of coherent control in a proposed device
implementing a quantum information processor (QIP) is an important task for
both comparing different devices and assessing a device's prospects with
regards to achieving fault-tolerant quantum control. We implement in a
liquid-state nuclear magnetic resonance QIP the randomized benchmarking
protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error
per randomized pulse of with a
single qubit QIP and show an experimentally relevant error model where the
randomized benchmarking gives a signature fidelity decay which is not possible
to interpret as a single error per gate. We explore and experimentally
investigate multi-qubit extensions of this protocol and report an average error
rate for one and two qubit gates of for a three
qubit QIP. We estimate that these error rates are still not decoherence limited
and thus can be improved with modifications to the control hardware and
software.Comment: 10 pages, 6 figures, submitted versio
The \u3ci\u3eA\u3c/i\u3e Series of Allelomorphs in Relation to Pigmentation in Maize
Introduction ... 503
The allelomorph Ab ... 504
The allelomorph ap ... 505
Dominance ... 508
Summary ... 508
Literature Cited ... 50
- …