14,004 research outputs found

    Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions

    Full text link
    We model the roadway of a suspension bridge as a thin rectangular plate and we study in detail its oscillating modes. The plate is assumed to be hinged on its short edges and free on its long edges. Two different kinds of oscillating modes are found: longitudinal modes and torsional modes. Then we analyze a fourth order hyperbolic equation describing the dynamics of the bridge. In order to emphasize the structural behavior we consider an isolated equation with no forcing and damping. Due to the nonlinear behavior of the cables and hangers, a structural instability appears. With a finite dimensional approximation we prove that the system remains stable at low energies while numerical results show that for larger energies the system becomes unstable. We analyze the energy thresholds of instability and we show that the model allows to give answers to several questions left open by the Tacoma collapse in 1940.Comment: 33 page

    Saddle Points Stability in the Replica Approach Off Equilibrium

    Full text link
    We study the replica free energy surface for a spin glass model near the glassy temperature. In this model the simplicity of the equilibrium solution hides non trivial metastable saddle points. By means of the stability analysis performed for one and two real replicas constrained, an interpretation for some of them is achieved.Comment: 10 pages and 3 figures upon request, Univerista` di Roma I preprint 94/100

    Analysis of a dry friction problem under small displacements: application to a bolted joint

    Get PDF
    This study presents an analysis of the problem of macroscopic contact of steel upon steel with dry friction, in the specific case of a bolted joint. The configurations of these types of joints result in very small displacements and interface sliding velocities. To understand how the system formed by the two surfaces in contact works, an experiment was carried out. The analysis of the results obtained made it possible to define the behavior of the system and to model the variations of the main parameters by original and continuous laws. These laws accurately correlate to all the results of the tests effectuated

    Uniqueness of the thermodynamic limit for driven disordered elastic interfaces

    Get PDF
    We study the finite size fluctuations at the depinning transition for a one-dimensional elastic interface of size LL displacing in a disordered medium of transverse size M=kLζM=k L^\zeta with periodic boundary conditions, where ζ\zeta is the depinning roughness exponent and kk is a finite aspect ratio parameter. We focus on the crossover from the infinitely narrow (k0k\to 0) to the infinitely wide (kk\to \infty) medium. We find that at the thermodynamic limit both the value of the critical force and the precise behavior of the velocity-force characteristics are {\it unique} and kk-independent. We also show that the finite size fluctuations of the critical force (bias and variance) as well as the global width of the interface cross over from a power-law to a logarithm as a function of kk. Our results are relevant for understanding anisotropic size-effects in force-driven and velocity-driven interfaces.Comment: 10 pages, 12 figure

    Relaxation in yield stress systems through elastically interacting activated events

    Get PDF
    We study consequences of long-range elasticity in thermally assisted dynamics of yield stress materials. Within a two-dimensinal mesoscopic model we calculate the mean-square displacement and the dynamical structure factor for tracer particle trajectories. The ballistic regime at short time scales is associated with a compressed exponential decay in the dynamical structure factor, followed by a subdiffusive crossover prior to the onset of diffusion. We relate this crossover to spatiotemporal correlations and thus go beyond established mean field predictions.Comment: 5 pages, 2 figures, to appear in PR

    Orbital Polarization in Strained LaNiO3_{3}: Structural Distortions and Correlation Effects

    Full text link
    Transition-metal heterostructures offer the fascinating possibility of controlling orbital degrees of freedom via strain. Here, we investigate theoretically the degree of orbital polarization that can be induced by epitaxial strain in LaNiO3_3 films. Using combined electronic structure and dynamical mean-field theory methods we take into account both structural distortions and electron correlations and discuss their relative influence. We confirm that Hund's rule coupling tends to decrease the polarization and point out that this applies to both the d8Ld^8\underline{L} and d7d^7 local configurations of the Ni ions. Our calculations are in good agreement with recent experiments, which revealed sizable orbital polarization under tensile strain. We discuss why full orbital polarization is hard to achieve in this specific system and emphasize the general limitations that must be overcome to achieve this goal.Comment: 13 pages, 13 figure

    Dynamical heterogeneities as fingerprints of a backbone structure in Potts models

    Full text link
    We investigate slow non-equilibrium dynamical processes in two-dimensional qq--state Potts model with both ferromagnetic and ±J\pm J couplings. Dynamical properties are characterized by means of the mean-flipping time distribution. This quantity is known for clearly unveiling dynamical heterogeneities. Using a two-times protocol we characterize the different time scales observed and relate them to growth processes occurring in the system. In particular we target the possible relation between the different time scales and the spatial heterogeneities originated in the ground state topology, which are associated to the presence of a backbone structure. We perform numerical simulations using an approach based on graphics processing units (GPUs) which permits to reach large system sizes. We present evidence supporting both the idea of a growing process in the preasymptotic regime of the glassy phases and the existence of a backbone structure behind this processes.Comment: 9 pages, 7 figures, Accepted for publication in PR
    corecore