6,072 research outputs found

    Probing the phase diagram of CeRu_2Ge_2 by thermopower at high pressure

    Full text link
    The temperature dependence of the thermoelectric power, S(T), and the electrical resistivity of the magnetically ordered CeRu_2Ge_2 (T_N=8.55 K and T_C=7.40 K) were measured for pressures p < 16 GPa in the temperature range 1.2 K < T < 300 K. Long-range magnetic order is suppressed at a p_c of approximately 6.4 GPa. Pressure drives S(T) through a sequence of temperature dependences, ranging from a behaviour characteristic for magnetically ordered heavy fermion compounds to a typical behaviour of intermediate-valent systems. At intermediate pressures a large positive maximum develops above 10 K in S(T). Its origin is attributed to the Kondo effect and its position is assumed to reflect the Kondo temperature T_K. The pressure dependence of T_K is discussed in a revised and extended (T,p) phase diagram of CeRu_2Ge_2.Comment: 7 pages, 6 figure

    High pressure magnetic state of MnP probed by means of muon-spin rotation

    Get PDF
    We report a detailed μ\muSR study of the pressure evolution of the magnetic order in the manganese based pnictide MnP, which has been recently found to undergo a superconducting transition under pressure once the magnetic ground state is suppressed. Using the muon as a volume sensitive local magnetic probe, we identify a ferromagnetic state as well as two incommensurate helical states (with propagation vectors Q{\bf Q} aligned along the crystallographic cc- and bb-directions, respectively) which transform into each other through first order phase transitions as a function of pressure and temperature. Our data appear to support that the magnetic state from which superconductivity develops at higher pressures is an incommensurate helical phase.Comment: 11 pages, 9 figure

    Extended Magnetic Dome Induced by Low Pressures in Superconducting FeSe1-x_\mathrm{1\text{-}x}Sx_\mathrm{x}

    Full text link
    We report muon spin rotation (μ\muSR) and magnetization measurements under pressure on Fe1+δ_{1+\delta}Se1-x_\mathrm{1\text{-}x}Sx_\mathrm{x} with x 0.11\approx 0.11.Above p0.6p\approx0.6 GPa we find microscopic coexistence of superconductivity with an extended dome of long range magnetic order that spans a pressure range between previously reported separated magnetic phases. The magnetism initially competes on an atomic scale with the coexisting superconductivity leading to a local maximum and minimum of the superconducting Tc(p)T_\mathrm{c}(p). The maximum of TcT_\mathrm{c} corresponds to the onset of magnetism while the minimum coincides with the pressure of strongest competition. A shift of the maximum of Tc(p)T_\mathrm{c}(p) for a series of single crystals with x up to 0.14 roughly extrapolates to a putative magnetic and superconducting state at ambient pressure for x 0.2\geq0.2.Comment: 10 pages, 6 figures, including supplemental materia

    Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    Full text link
    The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important issues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure (pp) were studied by means of muon spin rotation. The magnetism remains bulk up to p3.5p\simeq3.5~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at pp\simeq7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc1.2T_c \simeq 1.2~K which decreases upon increasing the pressure. In the intermediate pressure region (3.5p73.5\lesssim p\lesssim 7~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (TcT_c) and of the superfluid density (ρs\rho_s). A scaling of ρs\rho_s with Tc3.2T_c^{3.2} as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.Comment: 9 pages, 8 figure
    corecore