119 research outputs found
Implementation of the 2006 Convention on the Rights of Persons with Disabilities in Zimbabwe: A review
Background:Â The Convention on the Rights of Persons with Disabilities came into place in 2006, as the main instrument for advancing the human rights of persons with disabilities. For many African states, the Convention came amidst ubiquitous marginalisation and discrimination of persons with disabilities. As expected, the Convention has been hailed as a landmark in the struggle to reframe the needs and concerns of persons with disabilities.
Objectives:Â This article reviews the implementation of the Convention by the Zimbabwean government.
Method:Â The study relies on reviews of extant literature on disability rights. Reviewed documents include the Convention, constitution and other related national laws, policies and measures pertaining to disability rights.
Results:Â This article lauds the state for promulgating a disability-friendly constitution that resembles the Convention to effectuate a human rights approach to disability issues. Relatedly, the state came up with institutions that collaborate with research institutes and disability organisations to conduct research, provide services to persons with disabilities, raise awareness and advocacy and litigate for disability rights.
Conclusion:Â In spite of these efforts, this article shows that Zimbabwe has yet to close the gap on the ideals of the Convention, mainly because of limited resources amongst state-funded institutions for advancing disability issues. The government of Zimbabwe is challenged to domesticate all provisions of the Convention and to provide resources to institutions for progressive realisation of the rights of persons with disabilities
Norepinephrine Augments Salmonella enterica-Induced Enteritis in a Manner Associated with Increased Net Replication but Independent of the Putative Adrenergic Sensor Kinases QseC and QseE
Stress has long been correlated with susceptibility to microbial infection. One explanation for this phenomenon is the ability of pathogens to sense and respond to host stress-related catecholamines, such as norepinephrine (NE). In Gram-negative enteric pathogens, it has been proposed that NE may facilitate growth by mediating iron supply, or it may alter gene expression by activating adrenergic sensor kinases. The aim of this work was to investigate the relative importance of these processes in a model in which NE alters the outcome of Salmonella enterica serovar Typhimurium infection. A bovine ligated ileal loop model was used to study the effect of NE on enteritis induced by S. Typhimurium and on the bacterial in vivo replication rate. Mutants lacking putative adrenergic receptor genes were assessed in the loop model, in a calf intestinal colonization model, and in vitro. S. Typhimurium-induced enteritis was significantly enhanced by addition of 5 mM NE. This effect was associated with increased net bacterial replication in the same model. Exogenous ferric iron also stimulated bacterial replication in the medium used but not transcription of enteritis-associated loci. The putative adrenergic sensors QseC and QseE were not required for NE-enhanced enteritis, intestinal colonization of calves, or NE-dependent growth in iron-restricted medium and did not influence expression or secretion of enteritis-associated virulence factors. Our findings support a role for stress-related catecholamines in modulating the virulence of enteric bacterial pathogens in vivo but suggest that bacterial adrenergic sensors may not be the vital link in such interkingdom signaling in Salmonella
The B subunits of cholera and Escherichia coli heat-labile toxins enhance the immune responses in mice orally immunised with a recombinant live P-fimbrial vaccine for avian pathogenic E. coli
This study aimed to investigate the adjuvant effect of recombinant attenuated Salmonella expressing cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin B subunit (LTB) for the P-fimbriae subunit-based vaccine of avian pathogenic E. coli (APEC) in a murine model. The PapA-specific sIgA and IgG responses were significantly enhanced after immunisation with the Salmonella-PapA vaccine in the presence of CTB or LTB. The group immunised with the Salmonella-LTB strain promoted Th1-type immunity, whereas that immunised with the Salmonella-CTB strain produced Th2-type immunity. We concluded that both Salmonella-CTB and -LTB strains can enhance the immune response to PapA, and that the LTB strain may be a more effective adjuvant for APEC vaccination, which requires higher Th1-type immunity for protection. Thus, our findings provide evidence that immunisation with an adjuvant, LTB, is one of the strategies of developing effective vaccines against P-fimbriated APEC
Vimentin and PSF Act in Concert to Regulate IbeA+ E. coli K1 Induced Activation and Nuclear Translocation of NF-κB in Human Brain Endothelial Cells
IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities.IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus.These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis
Identification of genes required for soil survival in Burkholderia thailandensis by transposon-directed insertion site sequencing.
Transposon-directed insertion site sequencing was used to identify genes required by Burkholderia thailandensis to survive in plant/soil microcosms. A total of 1,153 genetic loci fulfilled the criteria as being likely to encode survival characteristics. Of these, 203 (17.6 %) were associated with uptake and transport systems; 463 loci (40.1 %) coded for enzymatic properties, 99 of these (21.4 %) had reduction/oxidation functions; 117 (10.1 %) were gene regulation or sensory loci; 61 (5.3 %) encoded structural proteins found in the cell envelope or with enzymatic activities related to it, distinct from these, 46 (4.0 %) were involved in chemotaxis and flagellum, or pilus synthesis; 39 (3.4 %) were transposase enzymes or were bacteriophage-derived; and 30 (2.6 %) were involved in the production of antibiotics or siderophores. Two hundred and twenty genes (19.1 %) encoded hypothetical proteins or those of unknown function. Given the importance of motility and pilus formation in microcosm persistence the nature of the colonization of the rhizosphere was examined by confocal microscopy. Wild type B. thailandensis expressing red fluorescent protein was inoculated into microcosms. Even though the roots had been washed, the bacteria were still present but they were motile with no attachment having taken place, perhaps being retained in a biofilm
Detection of virulence-associated genes of Pasteurella multocida isolated from cases of fowl cholera by multiplex-PCR
The current systems of breeding poultry, based on high population density, increase the risk of spreading pathogens, especially those causing respiratory diseases and those that have more than one host. Fowl Cholera (FC) is one such pathogen, and even though it represents one of several avian diseases that should be considered in the differential diagnosis of notifiable diseases that present with sudden death, the pathogenesis and virulence factors involved in FC are still poorly understood. The objective of this study was to investigate twelve genes related to virulence in 25 samples of Pasteurella multocida isolated from FC cases in the southern region of Brazil through the development of multiplex PCR protocols. The protocols developed were capable of detecting all of the proposed genes. The ompH, oma87, sodC, hgbA, hgbB, exBD-tonB and nanB genes were present in 100% of the samples (25/25), the sodA and nanH genes were present in 96% (24/25), ptfA was present in 92% (23/25), and pfhA was present in 60% (15/25). Gene toxA was not identified in any of the samples studied (0/25). Five different genetic profiles were obtained, of which P1 (negative to toxA) was the most common. We concluded that the multiplex-PCR protocols could be useful tools for rapid and simultaneous detection of virulence genes. Despite the high frequency of the analyzed genes and the fact that all samples belonged to the same subspecies of P. multocida, five genetic profiles were observed, which should be confirmed in a study with a larger number of samples
Differential Gene Expression and Adherence of Escherichia coli O157:H7 In Vitro and in Ligated Pig Intestines
BACKGROUND: Escherichia coli O157:H7 strain 86-24 grown in MacConkey broth (MB) shows almost no adherence to cultured epithelial cells but adheres well in pig ligated intestines. This study investigated the mechanisms associated with the difference between in-vitro and in-vivo adherence of the MB culture. METHODOLOGY/PRINCIPAL FINDINGS: It was found that decreased adherence in vitro by bacteria grown in MB was mainly due to lactose, possibly implicating the involvement of carbon catabolite repression (CCR). Expression of selected virulence-related genes associated with adherence and CCR was then examined by quantitative PCR. When bacteria were grown in MB and Brain Heart Infusion with NaHCO(3) (BHIN) plus lactose, pH was reduced to 5.5-5.9 and there was a significant decrease in expression of the locus of enterocyte effacement (LEE) genes eae, tir, espD, grlA/R and ler, and an increase in cya (cAMP), and two negative regulators of the LEE, gadE and hfq. Putative virulence genes stcE, hlyA, ent and nleA were also decreased in vitro. Reversal of these changes was noted for bacteria recovered from the intestine, where transcripts for qseF and fis and putative virulence factors AidA(15), TerC and Ent/EspL2 were significantly increased, and transcripts for AIDA(48), Iha, UreC, Efa1A, Efa1B, ToxB, EhxA, StcE, NleA and NleB were expressed at high levels. CONCLUSIONS/SIGNIFICANCE: Presence of lactose resulted in decreased expression of LEE genes and the failure of EHEC O157:H7 to adhere to epithelial cells in vitro but this repression was overcome in vivo. CCR and/or acidic pH may have played a role in repression of the LEE genes. Bacterial pathogens need to integrate their nutritional metabolism with expression of virulence genes but little is known of how this is done in E. coli O157:H7. This study indicates one aspect of the subject that should be investigated further
- …