79 research outputs found

    Multiple thermochronometers applied to the quantitative analysis of compressive systems: The southern sub-Andean fold and thrust belt of Bolivia: From source rock to trap

    Get PDF
    The evolution of fold and thrust belts requires time data restrictions to determine the rates related to the interaction of surface and subsurface processes and to quantify the time relationship between the components of the petroleum system: reservoir, seal, source rock and trap. The sub-Andean fold-and-thrust belt in the Bolivian territory in general, and the regional transect that links the structures of Curuyuqui-Carohuaicho-Tatarenda-Borebigua-Charagua and Mandeyapecua in particular, constitutes a complex multi-variable system in which the definition of time-Temperature (t-T) trajectories has led to new suitable structural and stratigraphic conclusions. The integration of multiple thermochronological-geochronological systems (Apatite Fission Track, Apatite (U-Th-Sm)/He and UPb SHRIMP on zircon) and the existing surface and subsurface geological constraints made it possible to develop a chrono-kinematic characterization of fault-related anticlines, defining their formation chronology, structural growth rate and link between them in the study area. Furthermore, it was also possible to perform a quantitative analysis of the subsidence-burial and exhumation-erosion phenomena that occurred from the deposition of Silurian-Devonian source rocks to the present time, providing relevant determinations to the modeling of the Oil & Gas system.Fil: Hernandez, Juan I.. Geomap S.a.; ArgentinaFil: Hernández, Roberto M.. Geomap S.a.; ArgentinaFil: Dalenz Farjat, Alejandra. Geomap S.a.; ArgentinaFil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología. Laboratorio de Modelado Geológico; ArgentinaFil: Alvarez, Luis A.. Geomap S.a.; ArgentinaFil: Dellmans, Luis M.. Geomap S.a.; ArgentinaFil: Costilla, Marcos Roberto. Geomap S.a.; ArgentinaFil: Alvarez, Andres F.. Geomap S.a.; ArgentinaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bordese, Sofia. lA - Te Andes S.A. Laboratorio de Termocronología de Los Andes; ArgentinaFil: Arzadún, Guadalupe. lA - Te Andes S.A. Laboratorio de Termocronología de Los Andes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guibaldo, Cristina. lA - Te Andes S.A. Laboratorio de Termocronología de Los Andes; ArgentinaFil: Glasmacher, Ulrich A.. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Tomezzoli, Renata Nela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Stockli, Daniel F.. University of Texas; Estados UnidosFil: Fuentes, Facundo. YPF - Tecnología; ArgentinaFil: Soria Galvarro, Jaime. YPF - Tecnología; ArgentinaFil: Rosales, Adolfo. YPF - Tecnología; ArgentinaFil: Dzelalija, Francisco. YPF - Tecnología; ArgentinaFil: Haring, Claudio. YPF - Tecnología; Argentin

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (s)\sqrt(s) = 0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pppp collisions at s\sqrt{s} = 7 TeV

    No full text
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at s=7\sqrt{s} = 7~TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity \dnchdeta|_{|\eta| < 0.5} = 5.78\pm 0.01\stat\pm 0.23\syst for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from s=0.9\sqrt{s} = 0.9 to 7~TeV is 66.1\%\pm 1.0\%\stat\pm 4.2\%\syst. The mean transverse momentum is measured to be 0.545\pm 0.005\stat\pm 0.015\syst\GeVc. The results are compared with similar measurements at lower energies.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    No full text
    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/ c to 1 TeV/ c . The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.) , independent of the muon momentum, below 100 GeV/ c . This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments
    corecore