136 research outputs found
Effectiveness of interventions to support the early detection of skin cancer through skin self-examination: a systematic review and meta-analysis.
BACKGROUND: As skin cancer incidence rises, there is a need to evaluate early detection interventions by the public using skin self-examination (SSE); however, the literature focuses on primary prevention. No systematic reviews have evaluated the effectiveness of such SSE interventions. OBJECTIVES: To systematically examine, map, appraise and synthesize, qualitatively and quantitatively, studies evaluating the early detection of skin cancer, using SSE interventions. METHODS: This is a systematic review (narrative synthesis and meta-analysis) examining randomized controlled trials (RCTs) and quasiexperimental, observational and qualitative studies, published in English, using PRISMA and National Institute for Health and Care Excellence guidance. The MEDLINE, Embase and PsycINFO databases were searched through to April 2015 (updated in April 2018 using MEDLINE). Risk-of-bias assessment was conducted. RESULTS: Included studies (n = 18), totalling 6836 participants, were derived from 22 papers; these included 12 RCTs and five quasiexperiments and one complex-intervention development. More studies (n = 10) focused on targeting high-risk groups (surveillance) than those at no higher risk (screening) (n = 8). Ten (45%) study interventions were theoretically underpinned. All of the study outcomes were self-reported, behaviour related and nonclinical in nature. Meta-analysis demonstrated the impact of the intervention on the degree of SSE activity from five studies, especially in the short term (up to 4 months) (odds ratio 2·31, 95% confidence interval 1·90-2·82), but with small effect sizes. Risk-of-bias assessment indicated that 61% of the studies (n = 11) were of weak quality. CONCLUSIONS: Four RCTs and a quasiexperimental study indicate that some interventions can enhance SSE activity and so are more likely to aid early detection of skin cancer. However, the actual clinical impact remains unclear, and this is based on overall weak study (evidence) quality
Tall tales from de Sitter space II: Field theory dualities
We consider the evolution of massive scalar fields in (asymptotically) de
Sitter spacetimes of arbitrary dimension. Through the proposed dS/CFT
correspondence, our analysis points to the existence of new nonlocal dualities
for the Euclidean conformal field theory. A massless conformally coupled scalar
field provides an example where the analysis is easily explicitly extended to
'tall' background spacetimes.Comment: 31 pages, 2 figure
Out of equilibrium: understanding cosmological evolution to lower-entropy states
Despite the importance of the Second Law of Thermodynamics, it is not
absolute. Statistical mechanics implies that, given sufficient time, systems
near equilibrium will spontaneously fluctuate into lower-entropy states,
locally reversing the thermodynamic arrow of time. We study the time
development of such fluctuations, especially the very large fluctuations
relevant to cosmology. Under fairly general assumptions, the most likely
history of a fluctuation out of equilibrium is simply the CPT conjugate of the
most likely way a system relaxes back to equilibrium. We use this idea to
elucidate the spacetime structure of various fluctuations in (stable and
metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure
Bosonic Excitations in Random Media
We consider classical normal modes and non-interacting bosonic excitations in
disordered systems. We emphasise generic aspects of such problems and parallels
with disordered, non-interacting systems of fermions, and discuss in particular
the relevance for bosonic excitations of symmetry classes known in the
fermionic context. We also stress important differences between bosonic and
fermionic problems. One of these follows from the fact that ground state
stability of a system requires all bosonic excitation energy levels to be
positive, while stability in systems of non-interacting fermions is ensured by
the exclusion principle, whatever the single-particle energies. As a
consequence, simple models of uncorrelated disorder are less useful for bosonic
systems than for fermionic ones, and it is generally important to study the
excitation spectrum in conjunction with the problem of constructing a
disorder-dependent ground state: we show how a mapping to an operator with
chiral symmetry provides a useful tool for doing this. A second difference
involves the distinction for bosonic systems between excitations which are
Goldstone modes and those which are not. In the case of Goldstone modes we
review established results illustrating the fact that disorder decouples from
excitations in the low frequency limit, above a critical dimension , which
in different circumstances takes the values and . For bosonic
excitations which are not Goldstone modes, we argue that an excitation density
varying with frequency as is a universal
feature in systems with ground states that depend on the disorder realisation.
We illustrate our conclusions with extensive analytical and some numerical
calculations for a variety of models in one dimension
Criticality of the Mean-Field Spin-Boson Model: Boson State Truncation and Its Scaling Analysis
The spin-boson model has nontrivial quantum phase transitions at zero
temperature induced by the spin-boson coupling. The bosonic numerical
renormalization group (BNRG) study of the critical exponents and
of this model is hampered by the effects of boson Hilbert space
truncation. Here we analyze the mean-field spin boson model to figure out the
scaling behavior of magnetization under the cutoff of boson states . We
find that the truncation is a strong relevant operator with respect to the
Gaussian fixed point in and incurs the deviation of the exponents
from the classical values. The magnetization at zero bias near the critical
point is described by a generalized homogeneous function (GHF) of two variables
and . The universal function has a
double-power form and the powers are obtained analytically as well as
numerically. Similarly, is found to be a GHF of
and . In the regime , the truncation produces no effect.
Implications of these findings to the BNRG study are discussed.Comment: 9 pages, 7 figure
Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment
In this paper, we review theoretical and experimental research on rare region
effects at quantum phase transitions in disordered itinerant electron systems.
After summarizing a few basic concepts about phase transitions in the presence
of quenched randomness, we introduce the idea of rare regions and discuss their
importance. We then analyze in detail the different phenomena that can arise at
magnetic quantum phase transitions in disordered metals, including quantum
Griffiths singularities, smeared phase transitions, and cluster-glass
formation. For each scenario, we discuss the resulting phase diagram and
summarize the behavior of various observables. We then review several recent
experiments that provide examples of these rare region phenomena. We conclude
by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative
Ising chain fixed, references added, v3: final version as publishe
Vicious walk with a wall, noncolliding meanders, and chiral and Bogoliubov-deGennes random matrices
Spatially and temporally inhomogeneous evolution of one-dimensional vicious
walkers with wall restriction is studied. We show that its continuum version is
equivalent with a noncolliding system of stochastic processes called Brownian
meanders. Here the Brownian meander is a temporally inhomogeneous process
introduced by Yor as a transform of the Bessel process that is a motion of
radial coordinate of the three-dimensional Brownian motion represented in the
spherical coordinates. It is proved that the spatial distribution of vicious
walkers with a wall at the origin can be described by the eigenvalue-statistics
of Gaussian ensembles of Bogoliubov-deGennes Hamiltonians of the mean-field
theory of superconductivity, which have the particle-hole symmetry. We report
that the time evolution of the present stochastic process is fully
characterized by the change of symmetry classes from the type to the type
I in the nonstandard classes of random matrix theory of Altland and
Zirnbauer. The relation between the non-colliding systems of the generalized
meanders of Yor, which are associated with the even-dimensional Bessel
processes, and the chiral random matrix theory is also clarified.Comment: REVTeX4, 16 pages, 4 figures. v2: some additions and correction
A Unified Algebraic Approach to Few and Many-Body Correlated Systems
The present article is an extended version of the paper {\it Phys. Rev.} {\bf
B 59}, R2490 (1999), where, we have established the equivalence of the
Calogero-Sutherland model to decoupled oscillators. Here, we first employ the
same approach for finding the eigenstates of a large class of Hamiltonians,
dealing with correlated systems. A number of few and many-body interacting
models are studied and the relationship between their respective Hilbert
spaces, with that of oscillators, is found. This connection is then used to
obtain the spectrum generating algebras for these systems and make an algebraic
statement about correlated systems. The procedure to generate new solvable
interacting models is outlined. We then point out the inadequacies of the
present technique and make use of a novel method for solving linear
differential equations to diagonalize the Sutherland model and establish a
precise connection between this correlated system's wave functions, with those
of the free particles on a circle. In the process, we obtain a new expression
for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having
Laughlin wave function as the ground-state and point out the natural emergence
of the underlying linear symmetry in this approach.Comment: 18 pages, Revtex format, To appear in Physical Review
Random Mass Dirac Fermions in Doped Spin-Peierls and Spin-Ladder systems: One-Particle Properties and Boundary Effects
Quasi-one-dimensional spin-Peierls and spin-ladder systems are characterized
by a gap in the spin-excitation spectrum, which can be modeled at low energies
by that of Dirac fermions with a mass. In the presence of disorder these
systems can still be described by a Dirac fermion model, but with a random
mass. Some peculiar properties, like the Dyson singularity in the density of
states, are well known and attributed to creation of low-energy states due to
the disorder. We take one step further and study single-particle correlations
by means of Berezinskii's diagram technique. We find that, at low energy
, the single-particle Green function decays in real space like
. It follows that at these energies the
correlations in the disordered system are strong -- even stronger than in the
pure system without the gap. Additionally, we study the effects of boundaries
on the local density of states. We find that the latter is logarithmically (in
the energy) enhanced close to the boundary. This enhancement decays into the
bulk as and the density of states saturates to its bulk value on
the scale . This scale is different from
the Thouless localization length . We
also discuss some implications of these results for the spin systems and their
relation to the investigations based on real-space renormalization group
approach.Comment: 26 pages, LaTex, 9 PS figures include
Persistence in a Stationary Time-series
We study the persistence in a class of continuous stochastic processes that
are stationary only under integer shifts of time. We show that under certain
conditions, the persistence of such a continuous process reduces to the
persistence of a corresponding discrete sequence obtained from the measurement
of the process only at integer times. We then construct a specific sequence for
which the persistence can be computed even though the sequence is
non-Markovian. We show that this may be considered as a limiting case of
persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte
- …