21 research outputs found

    (2E,4E)-1-(2-Hy­droxy­phen­yl)-5-phenyl­penta-2,4-dien-1-one

    Get PDF
    In the structure of the title chalcone, C17H14O2, derived from cinnamaldehyde, the olefine group has a trans configuration. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen-bond inter­action with graph-set motif S(6)

    8-Hydroxyquinoline Schiff-base Compounds as Antioxidants and Modulators of Copper-Mediated Aβ Peptide Aggregation

    Get PDF
    One of the hallmarks of Alzheimer\u27s disease (AD) in the brain are amyloid-β (Aβ) plaques, and metal ions such as copper(II) and zinc(II) have been shown to play a role in the aggregation and toxicity of the Aβ peptide, the major constituent of these extracellular aggregates. Metal binding agents can promote the disaggregation of Aβ plaques, and have shown promise as AD therapeutics. Herein, we describe the syntheses and characterization of an acetohydrazone (8-H2QH), a thiosemicarbazone (8-H2QT), and a semicarbazone (8-H2QS) derived from 8-hydroxyquinoline. The three compounds are shown to be neutral at pH 7.4, and are potent antioxidants as measured by a Trolox Equivalent Antioxidant Capacity (TEAC) assay. The ligands form complexes with CuII, 8-H2QT in a 1:1 metal:ligand ratio, and 8-H2QH and 8-H2QS in a 1:2 metal:ligand ratio. A preliminary aggregation inhibition assay using the Aβ1–40 peptide showed that 8-H2QS and 8-H2QH inhibit peptide aggregation in the presence of CuII. Native gel electrophoresis/Western blot and TEM images were obtained to give a more detailed picture of the extent and pathways of Aβ aggregation using the more neurotoxic Aβ1 −42 in the presence and absence of CuII, 8-H2QH, 8-H2QS and the drug candidate PBT2. An increase in the formation of oligomeric species is evident in the presence of CuII. However, in the presence of ligands and CuII, the results match those for the peptide alone, suggesting that the ligands function by sequestering CuII and limiting oligomer formation in this assay

    A Novel Chromone Derivative with Anti-Inflammatory Property via Inhibition of ROS-Dependent Activation of TRAF6-ASK1-p38 Pathway

    Get PDF
    The p38 MAPK signaling pathway plays a pivotal role in inflammation. Targeting p38 MAPK may be a potential strategy for the treatment of inflammatory diseases. In the present study, we show that a novel chromone derivative, DCO-6, significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide, IL-1β and IL-6, decreased the levels of iNOS, IL-1β and IL-6 mRNA expression in both RAW264.7 cells and mouse primary peritoneal macrophages, and inhibited LPS-induced activation of p38 MAPK but not of JNK, ERK. Moreover, DCO-6 specifically inhibited TLR4-dependent p38 activation without directly inhibiting its kinase activity. LPS-induced production of intracellular reactive oxygen species (ROS) was remarkably impaired by DCO-6, which disrupted the formation of the TRAF6-ASK1 complex. Administering DCO-6 significantly protected mice from LPS-induced septic shock in parallel with the inhibition of p38 activation and ROS production. Our results indicate that DCO-6 showed anti-inflammatory properties through inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway. Blockade of the upstream events required for p38 MAPK action by DCO-6 may provide a new therapeutic option in the treatment of inflammatory diseases
    corecore