269 research outputs found

    Reassessment of anoxic storage of ethnographic rubber

    Get PDF

    Analysis of chromatin accessibility in decidualizing human endometrial stromal cells

    Get PDF
    Spontaneous decidualization of the endometrium in response to progesterone signaling is confined to menstruating species, including humans and other higher primates. During this process, endometrial stromal cells (EnSCs) differentiate into specialized decidual cells that control embryo implantation. We subjected undifferentiated and decidualizing human EnSCs to an assay for transposase accessible chromatin with sequencing (ATAC-seq) to map the underlying chromatin changes. A total of 185,084 open DNA loci were mapped accurately in EnSCs. Altered chromatin accessibility upon decidualization was strongly associated with differential gene expression. Analysis of 1533 opening and closing chromatin regions revealed over-representation of DNA binding motifs for known decidual transcription factors (TFs) and identified putative new regulators. ATAC-seq footprint analysis provided evidence of TF binding at specific motifs. One of the largest footprints involved the most enriched motif-basic leucine zipper-as part of a triple motif that also comprised the estrogen receptor and Pax domain binding sites. Without exception, triple motifs were located within Alu elements, which suggests a role for this primate-specific transposable element (TE) in the evolution of decidual genes. Although other TEs were generally under-represented in open chromatin of undifferentiated EnSCs, several classes contributed to the regulatory DNA landscape that underpins decidual gene expression

    Genetic Analysis Workshop 17 mini-exome simulation

    Get PDF
    The data set simulated for Genetic Analysis Workshop 17 was designed to mimic a subset of data that might be produced in a full exome screen for a complex disorder and related risk factors in order to permit workshop participants to investigate issues of study design and statistical genetic analysis. Real sequence data from the 1000 Genomes Project formed the basis for simulating a common disease trait with a prevalence of 30% and three related quantitative risk factors in a sample of 697 unrelated individuals and a second sample of 697 individuals in large, extended pedigrees. Called genotypes for 24,487 autosomal markers assigned to 3,205 genes and simulated affection status, quantitative traits, age, sex, pedigree relationships, and cigarette smoking were provided to workshop participants. The simulating model included both common and rare variants with minor allele frequencies ranging from 0.07% to 25.8% and a wide range of effect sizes for these variants. Genotype-smoking interaction effects were included for variants in one gene. Functional variants were concentrated in genes selected from specific biological pathways and were selected on the basis of the predicted deleteriousness of the coding change. For each sample, unrelated individuals and family, 200 replicates of the phenotypes were simulated

    Inorganic−Organic Hybrid Luminescent Binary Probe for DNA Detection Based on Spin-Forbidden Resonance Energy Transfer

    Get PDF
    We describe the design of new fluorescent binary probe sensors for DNA detection based on spin-forbidden resonance energy transfer (SF-RET). Binary probes consist of a donor and acceptor fluorophores that are attached to two different oligonucleotides and serve as a resonance energy transfer (RET) donor−acceptor pair when hybridized to adjacent sites of a target sequence. In the absence of target, excitation of the donor results in fluorescence only from the donor, but when the probes hybridize to the target, the fluorophores are brought into close proximity favoring RET, yielding fluorescence mainly from the acceptor fluorophore. These new binary probes use the metal complex Ru(bpy‘)(DIP)_2^(2+) as the energy donor and an organic fluorophore (Cy5) as the energy acceptor. Energy transfer from the MLCT state of the Ru complex to singlet Cy5 is spin forbidden and produces a delayed fluorescence of Cy5. This paper demonstrates that fluorescence delay of Cy5 can be used to time resolve the emission of the probe from the intense fluorescence background of a model system for cellular background; this provides the reported system to overcome intense autofluorescence, an important and general advantage over “classical” spin-allowed steady-state probes

    Benchmarking Relatedness Inference Methods with Genome-Wide Data from Thousands of Relatives

    Get PDF
    Inferring relatedness from genomic data is an essential component of genetic association studies, population genetics, forensics, and genealogy. While numerous methods exist for inferring relatedness, thorough evaluation of these approaches in real data has been lacking. Here, we report an assessment of 12 state-of-the-art pairwise relatedness inference methods using a data set with 2485 individuals contained in several large pedigrees that span up to six generations. We find that all methods have high accuracy (92–99%) when detecting first- and second-degree relationships, but their accuracy dwindles to \u3c43% for seventh-degree relationships. However, most identical by descent (IBD) segment-based methods inferred seventh-degree relatives correct to within one relatedness degree for \u3e76% of relative pairs. Overall, the most accurate methods are Estimation of Recent Shared Ancestry (ERSA) and approaches that compute total IBD sharing using the output from GERMLINE and Refined IBD to infer relatedness. Combining information from the most accurate methods provides little accuracy improvement, indicating that novel approaches, such as new methods that leverage relatedness signals from multiple samples, are needed to achieve a sizeable jump in performance

    A multi-scalar investigation of the colouring materials used in textile wrappings of Egyptian votive animal mummies

    Get PDF
    Commonly exhibited in museum galleries, animal mummies have been the focus of interest of both visitors and researchers alike. The study of these animal remains not only provides new insights into embalming techniques, but also brings a unique perspective on religious, social and economic practices. Twenty animal mummies are discussed in this study, including cats, ibises, crocodiles, calves and birds of prey from the collections of the British Museum (London, UK) and the Museo Egizio (Turin, Italy). The external textile wrappings encasing the mummified body of the animals were investigated with the main aim of identifying the colourants used. In fact, these are mostly patterned using undyed and coloured (mostly red, brown and black) linen strips. Broadband multispectral imaging (MSI) was initially carried out to obtain preliminary information at the macro-scale on the distribution and chemical nature of the colouring agents. Fibre optic reflectance spectroscopy (FORS) was then used to survey several coloured areas of the textile wrappings. Safflower (Carthamus tinctorius) and red ochre were identified non-invasively. Representative samples were then taken and observed using optical microscopy (OM) and scanning electron microscopy (SEM), in order to obtain information at the micro-scale on the distribution of the colouring agents on the fibres, as well as the presence of other materials, including those from environmental contamination. Energy dispersive X-ray spectrometry (EDX) revealed the elemental composition of particles and clear areas of the fibres, whereas high performance liquid chromatography tandem mass spectrometry (HPLC\u2013MS/MS) provided the identification of the organic dyes at a molecular level. The use of hydrolysable and condensed tannins, in combination with iron as a mordant, was found to be used in the very dark shades, which generally corresponded to the textiles with the worst state of preservation. Nevertheless, other aspects, such as fibre processing and bleaching, fungal attack and presence of coating materials appeared to play a role in the evaluation of the conservation state of these textiles. The characterisation of the dyes and the additional inorganic materials contributed to elucidating the production technology of the colours used for animal mummification, and provided insights into ancient dyeing methods
    corecore