8,611 research outputs found

    Execution: the Critical “What’s Next?” in Strategic Human Resource Management

    Get PDF
    The Human Resource Planning Society’s 1999 State of the Art/Practice (SOTA/P) study was conducted by a virtual team of researchers who interviewed and surveyed 232 human resource and line executives, consultants, and academics worldwide. Looking three to five years ahead, the study probed four basic topics: (1) major emerging trends in external environments, (2) essential organizational capabilities, (3) critical people issues, and (4) the evolving role of the human resource function. This article briefly reports some of the study’s major findings, along with an implied action agenda – the “gotta do’s for the leading edge. Cutting through the complexity, the general tone is one of urgency emanating from the intersection of several underlying themes: the increasing fierceness of competition, the rapid and unrelenting pace of change, the imperatives of marketplace and thus organizational agility, and the corresponding need to buck prevailing trends by attracting and, especially, retaining and capturing the commitment of world-class talent. While it all adds up to a golden opportunity for human resource functions, there is a clear need to get to get on with it – to get better, faster, and smarter – or run the risk of being left in the proverbial dust. Execute or be executed

    Nano and Micro indentation studies of bulk zirconia and EB PVD TBCs

    Get PDF
    In order to model the erosion of a material it is necessary to know the material properties of both the impacting particles as well as the target. In the case of electron beam (EB) physical vapour deposited(PVD) thermal barrier coatings (TBCs) the properties of the columns as opposed to the coating as a whole are important. This is due to the fact that discrete erosion events are on a similar scale as the size of the individual columns. Thus nano* and micro* indentation were used to determine the hardness and the Young"s modulus of the columns. However, care had to be taken to ensure that it was the hardness of the columns that was being measured and not the coating as a whole. This paper discusses the differences in the results obtained when using the two different tests and relates them to the interactions between the indent and the columns of the EB PVD TBC microstructure. It was found that individual columns had a hardness of 14 GPa measured using nano indentation, while the hardness of the coating, using micro indentation decreased from 13 to 2.4 GPa as the indentation load increased from 0.1 to 3N. This decrease in hardness was attributed to the interaction between the indenter and a number of adjacent columns and the ability of the columns to move laterally under indentation

    Velocity dominated singularities in the cheese slice universe

    Full text link
    We investigate the properties of spacetimes resulting from matching together exact solutions using the Darmois matching conditions. In particular we focus on the asymptotically velocity term dominated property (AVTD). We propose a criterion that can be used to test if a spacetime constructed from a matching can be considered AVTD. Using the Cheese Slice universe as an example, we show that a spacetime constructed from a such a matching can inherit the AVTD property from the original spacetimes. Furthermore the singularity resulting from this particular matching is an AVTD singularity.Comment: 11 pages, 3 figures, accepted for publication in the International Journal of Modern Physics

    Colour reverse learning and animal personalities: the advantage of behavioural diversity assessed with agent-based simulations

    Get PDF
    Foraging bees use colour cues to help identify rewarding from unrewarding flowers, but as conditions change, bees may require behavioural flexibility to reverse their learnt preferences. Perceptually similar colours are learnt slowly by honeybees and thus potentially pose a difficult task to reverse-learn. Free-flying honeybees (N = 32) were trained to learn a fine colour discrimination task that could be resolved at ca. 70% accuracy following extended differential conditioning, and were then tested for their ability to reverse-learn this visual problem multiple times. Subsequent analyses identified three different strategies: ‘Deliberative-decisive’ bees that could, after several flower visits, decisively make a large change to learnt preferences; ‘Fickle- circumspect’ bees that changed their preferences by a small amount every time they encountered evidence in their environment; and ‘Stay’ bees that did not change from their initially learnt preference. The next aim was to determine if there was any advantage to a colony in maintaining bees with a variety of decision-making strategies. To understand the potential benefits of the observed behavioural diversity agent-based computer simulations were conducted by systematically varying parameters for flower reward switch oscillation frequency, flower handling time, and fraction of defective ‘target’ stimuli. These simulations revealed that when there is a relatively high frequency of reward reversals, fickle-circumspect bees are more efficient at nectar collection. However, as the reward reversal frequency decreases the performance of deliberative-decisive bees becomes most efficient. These findings show there to be an evolutionary benefit for honeybee colonies with individuals exhibiting these different strategies for managing resource change. The strategies have similarities to some complex decision-making processes observed in humans, and algorithms implemented in artificial intelligence systems

    Flame Instability and Transition to Detonation in Supersonic Reactive Flows

    Full text link
    Multidimensional numerical simulations of a homogeneous, chemically reactive gas were used to study ignition, flame stability, and deflagration-to-detonation transition (DDT) in a supersonic combustor. The configuration studied was a rectangular channel with a supersonic inflow of stoichiometric ethylene-oxygen and a transimissive outflow boundary. The calculation is initialized with a velocity in the computational domain equal to that of the inflow, which is held constant for the duration of the calculation. The compressible reactive Navier-Stokes equations were solved by a high-order numerical algorithm on an adapting mesh. This paper describes two calculations, one with a Mach 3 inflow and one with Mach 5.25. In the Mach 3 case, the fuel-oxidizer mixture does not ignite and the flow reaches a steady-state oblique shock train structure. In the Mach 5.25 case, ignition occurs in the boundary layers and the flame front becomes unstable due to a Rayleigh-Taylor instability at the interface between the burned and unburned gas. Growth of the reaction front and expansion of the burned gas compress and preheat the unburned gas. DDT occurs in several locations, initiating both at the flame front and in the unburned gas, due to an energy-focusing mechanism. The growth of the flame instability that leads to DDT is analyzed using the Atwood number parameter

    Combustion of hydrogen injected into a supersonic airstream (a guide to the HISS computer program)

    Get PDF
    A computer program based on a finite-difference, implicit numerical integration scheme is described for the prediction of hydrogen injected into a supersonic airstream at an angle ranging from normal to parallel to the airstream main flow direction. Results of calculations for flow and thermal property distributions were compared with 'cold flow data' taken by NASA/Langley and show excellent correlation. Typical results for equilibrium combustion are presented and exhibit qualitatively plausible behavior. Computer time required for a given case is approximately one minute on a CDC 7600. A discussion of the assumption of parabolic flow in the injection region is given which demonstrates that improvement in calculation in this region could be obtained by a partially-parabolic procedure which has been developed. It is concluded that the technique described provides an efficient and reliable means for analyzing hydrogen injection into supersonic airstreams and the subsequent combustion
    • …
    corecore