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Abstract 

Foraging bees use colour cues to help identify rewarding from unrewarding flowers, 
but as conditions change, bees may require behavioural flexibility to reverse their 
learnt preferences. Perceptually similar colours are learnt slowly by honeybees and 
thus potentially pose a difficult task to reverse-learn. Free-flying honeybees (N = 32) 
were trained to learn a fine colour discrimination task that could be resolved at ca. 
70% accuracy following extended differential conditioning, and were then tested for 
their ability to reverse-learn this visual problem multiple times. Subsequent analyses 
identified three different strategies: ‘Deliberative-decisive’ bees that could, after 
several flower visits, decisively make a large change to learnt preferences; ‘Fickle-
circumspect’ bees that changed their preferences by a small amount every time they 
encountered evidence in their environment; and ‘Stay’ bees that did not change from 
their initially learnt preference. The next aim was to determine if there was any 
advantage to a colony in maintaining bees with a variety of decision-making 
strategies. To understand the potential benefits of the observed behavioural diversity 
agent-based computer simulations were conducted by systematically varying 
parameters for flower reward switch oscillation frequency, flower handling time, and 
fraction of defective ‘target’ stimuli. These simulations revealed that when there is a 
relatively high frequency of reward reversals, fickle-circumspect bees are more 
efficient at nectar collection. However, as the reward reversal frequency decreases the 
performance of deliberative-decisive bees becomes most efficient. These findings 
show there to be an evolutionary benefit for honeybee colonies with individuals 
exhibiting these different strategies for managing resource change. The strategies 
have similarities to some complex decision making processes observed in humans, 
and algorithms implemented in artificial intelligence systems. 

1.0 Introduction 
Foraging for nutrition in the form of nectar in natural environments presents a variety 
of potential dilemmas for free-flying bees. For example, there may be a number of 
flowers possessing similar identifying cues that may offer nectar as a nutritional 
reward [1], there could also be mimics like orchids that offer no reward [2], and there 
may be different temporal phases in which flowers vary their rewards [3-6]. It is also 
possible that plant species that do have rewarding flowers will sometimes present 
empty flowers simply because other foragers have recently depleted the flowers [6-9]. 
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Many social bees, like honeybees and bumblebees, exhibit flower constancy and will 
remain constant to one type of learnt rewarding flower, as long as it continues to 
present rewards [10]. This type of pollinator behaviour may be evaluated in reverse-
learning experiments [11, 12] and has been investigated in honeybees for both 
olfactory [12, 13] and saliently different colour discrimination [14, 15] tasks; and for 
bumblebees on sensorimotor learning tasks [16]. When considering saliently different 
colours like ‘orange’ and ‘blue’, free-flying honeybees can quickly learn within five 
trials to choose a rewarding colour with accuracy greater than 80%, and then quickly 
switch these learnt preferences after a further 1-2 trials if the reward paradigm is 
changed. However, with this short training, honeybees can only reverse decisions up 
to three times before discrimination falls to chance levels [15]. This finding was 
confirmed in a separate study that trained honeybees to discriminate between saliently 
different ‘blue’ and ‘yellow’ colour stimuli which were learnt in three trials to an 
accuracy greater than 80%, and the bees could then quickly switch preferences after 
1-2 further trials when the reward paradigm was switched [14]. In this case of a short 
learning opportunity, honeybees also chose between the colour stimuli at random 
levels if the reverse training continued for more than three reversals; however, if the 
training was extended to 10 rewards on a particular colour stimulus then reverse-
learning was very robust for at least nine reversals [14]. This indicates that length of 
training is important to the capacity of honeybees to robustly reverse-learn a salient 
colour task. 
 
Recent work examining how harnessed honeybees reverse-learn olfactory stimuli has 
revealed that different individual bees may possess different strategies for reverse-
learning [12]. If harnessed honeybees are presented with two different odorants to 
discriminate between using a standard proboscis extension reaction (PER) 
experimental setup [17], some bees can reverse-learn the discrimination up to three 
times [12], which is consistent with the work on salient colour discrimination with 
free-flying honeybees [14, 15]. However, an important difference in the recent work 
on olfactory reverse-learning was the observation of individual differences between 
how honeybees were able to perform the reverse switching task [12]. It was observed 
that there were three categories of honeybees: ‘efficient’ reversers that could quickly 
change preferences when experimental conditions changed; bees that did learn the 
initial discrimination task but then appeared unable to reverse-learn the task; and a 
third category that failed to learn the initial olfactory discrimination task [12]. The 
existence of the last category of bees implies that there was a reasonable degree of 
perceptual difficulty involved in the initial learning of this olfactory discrimination 
task. This finding of individual differences for perceptually difficult olfactory learning 
in harnessed bees agrees with other recent work reporting differences in performance 
levels when individual free-flying bees solve perceptually difficult colour 
discrimination tasks [18, 19]. 
 
When considering colour stimuli, recent work on honeybees [20, 21] and bumblebees 
[22] has revealed that the difficulty of a task can be controlled by varying the 
perceptual similarity of colour stimuli, especially since there is a soft sigmoidal 
function that describes the probability with which colour differences can be judged by 
bees [23-25]. Colour difference can be conveniently specified in a colour space like a 
Hexagon colour model which allows for a Euclidean distance between stimuli to be 
quantified [26]. Recent research has shown that when either honeybees [20, 21, 23, 
27] or bumblebees [22, 28] learn colour information in isolation (termed absolute 
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conditioning), individuals only demonstrate a coarse level of colour discrimination 
(about 1.5 hexagon units [22, 29]); whilst individuals that learn a target colour in the 
presence of perceptually similar distractor stimuli (termed differential conditioning) 
can learn to make relatively fine colour discriminations (<0.10 hexagon units [22, 
29]). However, colour learning with differential conditioning takes considerably 
longer for bees than learning coarse level colour discrimination with absolute 
conditioning. For example, a colour distance of about 0.04-0.08 hexagon units 
typically takes either honeybees or bumblebees about 50-60 visits to learn the 
discrimination to a level of about 75% accuracy [1, 18, 22, 29, 30]. There is evidence 
that this type of perceptually difficult discrimination places increased cognitive load 
on the information processing of both honeybee and bumblebees since individual bees 
will slow down to maintain accuracy for fine colour discrimination problems [18, 30, 
31], and/or will not perform at a high level of accuracy unless incorrect choices are 
punished with a bitter tasting substance [20, 31, 32]. Since perceptually similar colour 
stimuli potentially place increased cognitive load on bee colour judgements, it is 
important to understand the extent to which bees can reverse-learn such fine 
discrimination tasks, and to determine if there are differences in decision-making 
behaviour between individuals processing similar colours. 
 
To understand decision-making in bees for difficult visual tasks, it is useful to 
combine approaches of behavioural testing with computer modelling to interpret the 
biologically relevant factors that may influence how and why individuals make 
certain decisions, and subsequent benefits at a colony level [18, 33]. In particular, 
where bee behaviour varies between individuals or where local environmental 
conditions influence individual decision-making, agent-based models (ABMs), also 
called individual-based models, offer a powerful approach for understanding the 
intricate interactions and emergent outcomes of these complex systems in the context 
of behavioural ecology [34-40]. ABMs have been used to understand bee behaviour 
since the 1980s [41]. For example, ABMs have been used to understand bee foraging 
strategies (where these are assumed to be homogeneous within a population) in 
keeping with empirical data whilst considering recruitment, homing and memory of 
food source location [42]; and ABMs have been used to show that the benefits of 
recruitment by honeybees is heavily dependent on the density of flowers within an 
environment [43]. In this current study we combine the powerful approaches of 
behavioural testing with free-flying bees whilst solving perceptually difficult colour 
reversal tasks, and the use of ABMs to understand the potential colony level benefits 
of the diversity of observed behaviours. 

2.0 Methods: Behavioural experiments 

Behavioural experiments were conducted with free-flying honeybees (Apis mellifera 
Linnaeus) at the biological gardens of Johannes Gutenberg University (Mainz, 
Germany) between July and September 2009. A hive of honeybees was maintained 10 
m from a gravity feeder that provided 5% (vol.) sucrose solution. Individual bees 
were collected from the feeder site on a small Plexiglas® spoon, and were transferred 
to a test site situated 15 m from the feeder, and 20 m from the hive. At the test site 
individual bees were marked with a colour code on their thorax. Each bee was tested 
individually, and testing typically took 5-6 h/bee. 
 
The training apparatus consisted of a vertical rotating screen of 50 cm diameter. This 
apparatus presents stimuli on four 6×8 cm hangers, each with a small landing 
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platform, so that the spatial position of stimuli can be continuously changed during 
training, and hangers can be easily exchanged for fresh ones to exclude olfactory cues 
[44, 45]. Two of the hangers presented target stimuli, and two hangers presented 
distractor stimuli in pseudo-random positions. As the rotating screen apparatus could 
be freely rotated, this apparatus simulates a complex natural scenario where bees must 
forage from several flowers of potentially similar colour. The hangers enable well-
defined data collection by counting choices (touches to the landing stage of stimuli). 
In an experiment, bees were rewarded with 25% sucrose for making correct choices 
on a designated target stimulus, whilst a distractor stimulus only presented plain 
water. When a bee landed on a target stimulus it was presented with an additional 
sucrose drop on a plexiglass spoon so that it could be moved 1 m away to behind a 
small screen so that stimuli could be exchanged [44, 45]. A photograph of the rotating 
screen is presented in a previous study [45]. 
 
Stimuli were 6×6 cm coloured cards (Tonpapier no. 32 & 37, Baehr, Germany) that 
were of turquoise and blue appearance to a human observer respectively. Stimuli 
spectral properties were measured with a spectrophotometer (Spectro 320; Instrument 
Systems, München, Germany) between 300 and 650 nm. The colour visual system of 
the honeybee is different to human vision, and is based on three spectrally different 
types of photoreceptors maximally sensitive in the ultraviolet (UV), blue (B) and 
green (G) regions of the electromagnetic spectrum [28]. To quantify the colour 
difference between the turquoise and blue stimuli we used a colour hexagon model 
designed for hymenopteran trichromatic vision [26], considering the previously 
measured electrophysiological recordings for honeybee photoreceptors [46], data for 
standard daylight conditions converted to photon flux units [47], and assuming the 
visual system was adapted to the grey plastic background of the training apparatus 
[26]. The colour distance was 0.06 hexagon units, which is a colour discrimination 
task that is predicted to be sufficiently close so as to require differential conditioning 
for bees to learn [20, 24]. 
 
A total of 32 bees were tested. The experiment was counterbalanced in a pseudo-
randomised fashion so that for half of the bees the ‘turquoise’ stimuli were the initial 
targets, whilst the ‘blue’ stimuli were the initial targets for the other bees. Each 
individual bee was first provided with a form of absolute conditioning to the target 
stimulus for 30 decisions where the distractor hangers only presented the dissimilar 
grey background material. This ensured the bees were familiar with the experimental 
apparatus, and also enabled within-subject testing of whether absolute conditioning 
enabled any colour learning of the perceptually difficult colour discrimination task. 
 
Following this initial absolute conditioning, each bee received differential 
conditioning to the similar turquoise and blue stimuli for 60 decisions. At the 
conclusion of the 60th decision, a test bee was satiated on the initial target stimulus 
and allowed to return to the hive. When the bee returned to the apparatus, all four 
hangers presented the initial distractor stimulus to allow for priming to the reverse 
contingency as these four hangers also presented sucrose solution. The bee was 
allowed to collect sucrose from four landings and was satiated on the 4th hanger so 
that it would return to the hive. When the test bee returned again it received 
differential conditioning with the initial reward situation switched. This reverse 
training lasted for 20 decisions. The rewards were reversed again for another 20 
decisions as described above. Next, in the final phase of the experiment, the rewards 
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 5 

were reversed for 60 decisions. Thus each bee had to solve a complex set of reverse-
learning tasks that involved perceptually difficult discriminations where individual 
discrimination decisions were potentially ambiguous. For statistical analysis data was 
checked for normal distribution and arcsine transformed where necessary.  

3.0 Results: Behavioural experiments 
To evaluate if the bees had learnt the target stimulus following the initial absolute 
conditioning for 30 decisions, we considered the frequency of correct choices for the 
target in the first 10 decisions of the differential conditioning phase. For the 
‘turquoise’ target group the frequency of correct choices for the target was 52.4% (± 
16.9 s.d.) which was not significant from chance expectation (1-sample t-test, N=16, 
t= 0.560, df15, p= 0.584). For the ‘blue’ target group the frequency of correct choices 
for the target was 47.9% (± 15.5 s.d.) which was not significant from chance 
expectation (1-sample t-test, N=16, t= 0.560, df15, p= 0.584). These pooled results 
were not significantly different from chance expectation (independent sample t-test, 
t=0.774, df30, p=0.455). Thus the two colour stimuli were initially perceived as very 
similar by the bees. 
 
With differential conditioning the bees learnt the visual task gradually such that the 
mean frequency of correct choices was 73.5% ± 14.2 s.d. after 60 choices (Fig. 1). 
With the first reversal there was an indication that some bees could switch their 
decisions quickly (Fig. 1), but the choices for the initial target (45.0% ± 23.72 s.d.) 
was not what would be expected if the bees had completely switched their initially 
learnt colour preference (100-73.5 = 28.5%). Thus, considering previous evidence that 
there could potentially be individual differences between honeybees in how they 
reverse-learn a perceptually difficult task [12], we next tested for evidence of bees 
having different abilities to reverse-learn. 

Number of choices

C
or

re
ct

 c
ho

ic
es

 (%
)

Preliminary information acquisition
Phase 1

Experiment: alternating flower type offering reward
Phase 2

T1 : Rewarding flower type T2 T1 T2

0

20

40

60

80

100

10 30 50 70 90 110 130 150 170 190 210

 
Fig. 1. Mean (±95% confidence interval) of all 32 bees during differential conditioning and the three 
reversals occurring after 60, 80 and 100 choices. 
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 6 

To analyse the decision-making of the bees we considered the variation in choices at a 
particular reversal (R1-3) for a given colour when it changed from being a rewarded 
target to an unrewarding distractor. For each bee a value representing the change in its 
individual frequency of correct choices was calculated for the three respective 
reversals (R1 for 60-70, R2 for 80-90 and R3 for 100-110 choices). To statistically 
examine the magnitude of the reversal values (R1-3) we considered the standard 
deviation (s.d.) of all bees during the initial learning phase of the visual task (s.d. was 
14.1 and 14.2 for the ‘turquoise’ and ‘blue’ groups respectively) as the measure of 
behavioural variability. We then considered three categories of decision-making. 
Category 1 was no significant variation in choices (R1-3) following a particular 
reversal defined as within 1.645 s.d. (90% confidence interval); these bees were 
termed ‘Stay’ bees. Category 2 was a change greater than 1.645 s.d. and less than 
1.960 s.d. (95% confidence interval); these bees were termed ‘Fickle-circumspect’ 
bees. Category 3 was a change greater than 1.960 s.d. in choices during a reversal; 
these bees were termed ‘Deliberative-decisive’ bees. 
 
The subsequent analysis of the experiment revealed that 12% of bees (4/32) were 
consistent Deliberative-decisive bees (Fig. 2), and 12% of bees (4/32) were consistent 
Stay bees (Fig. 3). There were 24 bees that did not always remain faithful to just one 
strategy. Of these, seven bees initially exhibited a Stay bee strategy but moved to a 
Deliberative-decisive bee strategy, and nine bees were initially Deliberative-decisive 
and moved to a Stay bee strategy. There were eight bees that showed no clear pattern 
of loyalty to a strategy, and four of these eight sometimes fell into the Fickle-
circumspect strategy. 
 
To understand whether there might be a biologically plausible reason why colonies 
have bees with different strategies for dealing with switching between colours that are 
perceptually similar, we next used agent-based computer simulations. 
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Fig. 2. Mean (dark, blue line) of the four bees (grey lines) that exhibited a Deliberative-decisive 
strategy during differential conditioning and the three reversals following 60, 80 and 100 choices. 
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Fig. 3. Mean (dark, blue line) of the four bees (grey lines) that exhibited a Stay strategy during 
differential conditioning and the three reversals following 60, 80 and 100 choices. 

4.0 Methods: Simulation experiments 

The agent-based model used for our simulation represents a foraging patch with 
dispersed flower-agents, and a colony of bee-agents that search the patch to collect 
nutritional rewards from the flowers. We conducted a number of different 
experiments using the simulation by varying parameters determining the distribution 
of the foraging strategies of bees in a colony, the availability of flower nutritional 
rewards, and the reliability of flower nutritional rewards. 
 
The simulation was updated in discrete time steps. In each time step every bee-agent 
was updated synchronously, computing an action to be executed based on its current 
internal state and its perception of its local environment. Each flower-agent’s reward 
availability was also updated at every time step. Details are provided below. 
 
4.1 Flower distribution and reward availability 
The foraging patch was modelled as a torroidal grid. Each cell represented 0.35 m 
square in a foraging site of 200 m square (571 × 571 cells). Bee-agents searched this 
patch for flower-agents. Flower-agents of two equally abundant types, T1 and T2, 
were positioned according to a uniform random distribution, at most one per grid cell 
at density 13,071 / 326,041 cells (~1/25) for all simulations. This simulates a 
temperate environment in which resources are typically randomly spaced [48, 49]. 
Flower-agents may offer a reward (1 nutrition unit) to visiting bee-agents, or not, 
depending on the experiment. When a bee-agent visited a rewarding flower-agent it 
acquired the entire 1 unit. The reward was replenished after a bee-agent collected it, 
however, an individual bee-agent cannot return to a flower-agent within a single bout 
so that a particular reward is only available once for each bee-agent in each bout. This 
assumption allowed us to isolate bee-agents from one another to avoid forager 
population density effects that were not central to the particular research questions 
under consideration in some experiments. 
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In control experiments we introduced ‘defective’ flower-agents that did not offer a 
reward even when their type was expected to do so. By varying the percentage of 
defective flowers we isolated population density effects. 

4.2 The bee-agent and its colony 
Each bee-agent contained data: (x,y) grid cell position, variable preferences used as 
flower-agent landing probabilities for each flower-agent type (0, 100%) that totalled 
100%, current load (0, 100 nutrition units) as well as visual acuity and memory 
parameters (discussed below). 
 
To eliminate locality artefacts the beehive was not allocated a position. Instead bee-
agents were randomly placed on the grid to begin and end foraging bouts from any 
location. Since we are interested in relative foraging strategy performance, bee-agent 
flight speeds were irrelevant and were therefore uniformly set to one grid cell (in the 
direction of the cardinal points of the compass) per simulation time step. 

If a bee-agent occupies a grid cell containing a single flower-agent it will determine 
(using a strategy discussed below) whether or not to land and attempt to collect a 
reward. Each bee-agent memorises the flower-agents it just visited, and will not 
revisit a flower-agent in a particular bout. At the conclusion of a foraging bout, bee-
agents ‘forget’ the locations of previous visits. The justification for bee-agent 
forgetting is that animals have different memory phases, and are likely to just use 
short-term memory for recalling the recent choices made in a complex foraging 
environment [50]. Apart from for the four most recently visited flowers, a bee-agent 
must enter a flower-agent’s grid cell to determine if it has already visited the flower-
agent. To ensure that flower-agents are not repeatedly re-approached, bee-agents were 
modelled with accurate memory of the whereabouts of the last four flower-agents 
approached [51, 52]. 

At each simulation time step, each bee-agent examines its neighbourhood for flower-
agents. The bee-agent randomly chooses an unapproached flower-agent as its 
destination, or, if no unapproached flower-agents are detected, the bee-agent chooses 
a random cell in its neighbourhood. We recognise that bee foraging path selection is 
probably not entirely random [52], however, we are interested only in relative flower 
selection strategy performance, not absolute success of particular navigational 
approaches. Hence, as long as all bee-agents choose a path in the same way – 
randomly in our case – we obtain the information required to understand the relative 
success of different foraging strategies. 

4.3 Flower detection 
Bees can use multiple cues (vision and olfaction) to find flowers [53, 54]. Our model 
only considered that bee-agents distinguish between the two similar flower-agent 
types, T1 and T2, using visual cues. 

Bee spatial acuity is relatively poor compared with a vertebrate lens eye [55]. For 
example, in real life bumblebees can only detect a plant’s cluster of 3-5 flowers (each 
flower of 2.5 cm diameter) at a distance of less than 0.7 m [25, 56]. Detection appears 
to be a step function [25, 57] so we modelled bee-agent acuity as distances > 0.7 m — 
not detected, distances < 0.7 m — 95% chance of detecting flowers. Thus a bee-agent 
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 9 

can detect the presence of a flower-agent in a neighbouring grid cell (up to 0.35 m + 
0.35 m = 0.7 m away) with 95% accuracy, but bees cannot detect flowers at a greater 
distance [25, 57]. 

If a bee-agent is sharing a grid cell with a detected flower-agent the bee-agent has a 
probability of accurately discriminating a rewarding from an unrewarding flower-
agent. This probability is modelled as the learnt percentage preference for a particular 
flower-agent. This value represents the probability with which the bee brain correctly 
determines if a given flower is a target or distractor. With these values it is possible 
that a bee-agent detects a target flower-agent, but chooses not to land if its preference 
for that type causes it to mistakenly perceive it as a distractor. Conversely a bee may 
choose to land on a distractor due to a perceptual error, causing it to mistakenly 
perceive it as a target. This models the probabilistic way that bees discriminate 
between similar flower colours depending upon experience [23]. 

In this simulation, bee/flower-agent visits to rewarding or unrewarding flower-agents 
require the same time. The visit includes landing on and handling the rewarding or 
unrewarding flower-agent, as well as extracting or attempting to extract a reward. 
Flower-agent handling occurs within a single simulation time step along with flight 
between neighbouring locations and decision-making time unless otherwise noted for 
specific experiments. 

All bee-agents in our experiments undergo two phases of flower-agent preference 
adjustment behaviour based on experimental results (Section 3.0). These phases allow 
a bee-agent to adjust its internal preferences for flower-agents based on previous 
successful and failed reward collection attempts. During phase 1, bee-agents conduct 
standard learning behavior (as described above for real bees, Section 2.0). During 
phase 2, bee-agents adopt either a Deliberative-decisive, Fickle-circumspect or Stay 
behavior based on the strategies we outlined above for the real bees. The simulation 
of these phases is discussed below. 
 
4.4 Simulation phase 1 – bee-agent preliminary information acquisition 
At the start of an experiment, all bee-agents commence phase 1 with equal 50% 
preferences for each flower type T1 and T2. Thus, initially a bee-agent has a 50% 
probability of choosing to land on the first flower-agent it encounters. This 
corresponds directly to how real bees initially generalise similar colour flowers [23, 
28]. 

During phase 1, each time a bee-agent visits a rewarding flower-agent its preference 
for that type (T1 or T2) increases by 1% and its preference for the other type drops by 
1%. Each time a bee-agent visits an unrewarding flower-agent preference for its type 
decreases by 1% and its preference for the other type of flower-agent increases by 
1%. This learning model fits how real bees have been shown to learn in experiments 
[23, 28]. In this simulation, a bee-agent’s flower-agent preferences are clamped 
between 80 and 20% in keeping with realistic learning behaviour of bees for 
perceptually difficult tasks [23, 28] and our own results (Fig. 1). 

All bees undergo phase 1 described entirely by the strategy just outlined. At some 
point in time, entry into phase 2 occurs, triggering a change in bee-agent foraging 
behaviour. 
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4.5 Transition from simulation phase 1 to phase 2 
A simulation always begins in a scenario where T1 flower-agents are rewarding and 
T2 are not. This holds true for the whole of phase 1. Phase 1 continues until an 
average of 70% preference for T1 (and 30% preference for T2) is reached for the 
entire bee-agent colony. Then phase 2 begins. 

4.6 Simulation phase 2 – Deliberative-decisive, Fickle-circumspect or Stay behaviour 
Throughout phase 2, each bee-agent adopts one of the following foraging strategies 
depending on the experiment. 

Deliberative-decisive. A Deliberative-decisive bee-agent decisively reverses its 
preferences if, over a period of deliberation time its preferred flower type is 
consistently found to have become unrewarding and another type is detected as 
being consistently rewarding. When a switch occurs in the rewards offered by a 
flower-agent type (e.g. T1 flower-agents were rewarding and suddenly become 
unrewarding), a Deliberative-decisive bee-agent that encounters four 
unrewarding T1 and four rewarding T2 flower-agents, can invert its preference 
accuracy. For instance, if a Deliberative-decisive bee-agent had learnt through 
experience to have 70% preference for T1 and 30% for T2 flower-agents, after 
encountering four unrewarding T1 and four rewarding T2 this can become a 
70% preference for T2 and 30% for T1. This bee-agent has discriminatory 
ability and sufficient neural flexibility to quickly adjust to a new reward 
situation. This bee-agent’s foraging closely fits the profile of the free-flying 
bees shown in figure 2. 

Fickle-circumspect. A bee-agent may learn to make accurate decisions about flower-
agent types based on experience as described for experimental phase 1. The 
Fickle-circumspect bee type continues to learn in phase 2 with a 1% change per 
flower-agent visit as it did initially in phase 1. Whenever the reward situation 
changes, this bee type incrementally adjusts its preferences. It is fickle in the 
sense that it is always willing to adjust preferences based on new evidence. It is 
circumspect in the sense that the changes it makes are slight. This bee can adapt, 
but only slowly. Fickle-circumspect bee preferences are clamped between 80 
and 20% in keeping with the findings of our behavioural experiments (Fig. 1). 

Stay. A Stay bee’s preference ‘stays’ loyal to the flower-agent type for which it 
originally acquired a strong preference, even if that flower-agent type changes 
from rewarding to unrewarding. For example, once a Stay bee-agent reaches 
~70% preference for a flower-agent type, this preference becomes hard-wired, 
even if the availability of rewards offered by the flower-agents changes. This 
bee-agent’s foraging closely fits the profile of the free-flying bees shown in 
figure 3. 

4.7 Simulation experiments 
We conducted experiments to determine the impact of varying different conditions on 
the foraging success of colonies, each containing 60 bee-agents, utilising the 
following four foraging strategy compositions: all Fickle-circumspect bees, all Stay 
bees, all Deliberative-decisive bees, 1/3 mix of each bee type. Experimental method 
details are provided next. 
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Alternating reward experiments 
Real flowers typically offer rewards for only a period of time, and a flower that is 
rewarding in the morning may not do this later in the day (and vice versa) [3-6]. Thus 
we considered scenarios where the variation in the availability of rewards offered by 
flower-agents of type T1 and T2 alternates cyclically in periods ranging from 100 
time steps per cycle (on average, 19 changes of the flower reward situation during 
phase 2)1 to 1900 time steps per cycle (on average, only 1 change of the flower reward 
situation during phase 2) of the experiments. 

Throughout phase 1 of these experiments, T1 is rewarding and T2 is not. From the 
start of phase 2 for n time steps, T2 is rewarding and T1 is not. For the next n time 
steps T1 is rewarding and T2 is not. This switching process continues, where n is a 
number between 100 and 1900. See Figure 4a for a visual explanation of this process 
for n=1000, and Figure 4b for n=1900. 

Defective reward control experiments 
When bees forage together with coworkers or bees from other colonies in the same 
patch, there is some likelihood that a bee lands on a flower that should be offering a 
reward at the time of the visit, but the reward has recently been acquired by another 
bee [3-6]. 

By varying the fraction of a rewarding flower-agent type that is defective (in the sense 
that they do not offer rewards when they should), it was possible to test the relative 
impact of these conditions on the bee-agents’ foraging strategies. Phase 1 of these 
defective reward experiments were run as described above. During phase 2 of these 
experiments the proportion of the T1 flower-agents that were defective and contained 
no reward was systematically varied. T2 flower-agents remained unrewarding 
throughout the experiment. 

Handling time control experiments 
Flower handling time may impact on the relative success of different bee foraging 
strategies [3, 18]. Even if flower handling times are identical for rewarded and 
unrewarded landings, bees making poor landing decisions when compared with bees 
skipping over poor landing opportunities to search further could be expected to waste 
more time on flower handling for no reward [18, 19]. We tested for the impact of 
flower handling times by running experiments with a single reward swap at the 
transition from phase 1 to phase 2, using a series of flower handling times from 0 to 
20 time steps. In this experiment bee-agents sat idle for a number of simulation time 
steps corresponding to flower handling time when they visited a flower-agent, 
regardless of whether or not a reward was collected. 
 
Dependent variable 
The dependent variables of interest are the relative amounts of nutrition collected 
during each simulation run and returned to the hives by the four bee colony 
compositions under the experimental conditions. Nectar collection rate is a variable 

                                                
1 We found phase 1 of the experiments to have an average length of 1131 time steps (46 s.d.) when 
flower handling time was 0. Since the experiments all cease at time step 3000, this leaves an average 
length of 1869 time steps for phase 2. 
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likely to be of high importance to colony survival in natural conditions where 
resources may be constrained at certain times of the year [18, 58]. 

 
Environment  

Patch size 571 × 571 cells, torroidal boundary 

Patch grid cell size (modelled) 0.35 × 0.35 m 

Flower-agents  

T1 : T2 flower relative abundance (mean) 1 : 1 

Total number of flowers 13071 

Bee-agents  

Colony sizes and compositions 60 agents/colony, composed as: all 
Fickle-circumspect, all Stay, all 
Deliberative-decisive, 1/3 mix of each 

Flower detection accuracy 95% from a neighbouring cell or one 
shared with a flower 

Storage capacity 100 reward units 

Recently approached flower memory length 4 most recent approaches 

Visited flower memory length Every flower visited on a single bout 

Learning increment (for all bees during phase 1, 
and for Fickle-circumspect bees during phase 2) 

±1% point per flower visit 

Preference switch threshold (for Deliberative-
decisive bees during phase 2) 

Visit 4 surprising rewarding flowers 
and 4 surprising unrewarding flowers 
without encountering any unsurprising 
flowers 

Simulation length  

Duration of a simulation run (phase 1 + phase 2) 3000 time steps 

Duration of phase 1 Until colony mean preference for T1 
flowers ≥70% 

Table 1. Summary table of simulation parameters. 

4.8 Simulation model verification and validation 
Simulation verification involved checking the correctness of our model by ensuring 
that the simulation behaved in accordance with the behaviours detailed above. Checks 
included that: 

• Learn bee-agents changed preferences in ±1% increments appropriately. 
• Bee-agent approach and visit memories functioned correctly. 
• Stay bees did not change preferences during phase 2. 
• Flower distribution mean was 50% T1, 50% T2. 
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This verification process also allowed us to determine some derived values for the 
behaviour of the system that were important for interpreting our results. These are 
given below. 

Check that Deliberative-decisive bees make a flower-agent preference switch after 
receiving four rewards from sources that were not expected to offer a reward, and 
four failed attempts to extract a reward from flowers where a reward was expected. 

There is always some delay after a flower-agent reward availability swap until a 
Deliberative-decisive bee-agent makes a preference switch due to its need to visit a 
minimum of eight flower-agents. Mean time until bee-agent preference switch was 
765 time steps (273 s.d.) after the flower-agents changed their rewards (median switch 
time was 756 time steps). Values computed from a sample of 60 Deliberative-decisive 
bee-agents. 

Check transition condition from phase 1 to phase 2 occurs when the mean bee-agent 
flower-agent preference for T1 reaches 70%. 

We found that the mean time to reach a preference of T1 = 70% (T2 = 30%) was 1131 
time steps (45 s.d.). At this time, the bee-agent colonies had foraged on average a total 
of 667 units of reward (18 s.d.). Values computed from 40 randomised simulation 
runs with 60 bee-agents per colony. 

The gradual increase in a bee-agent’s preference for T1 flower-agents during the 
initial learning period (phase 1) is illustrated in figures 4 a and b. Consistent with fine 
colour learning in foraging honeybees and bumblebees, after both unsuccessful and 
successful visits to flowers, the bee-agents’ preferences for T1 increase. Reward 
foraged is plotted on the lower (green) lines. T1 preferences are plotted on the upper 
(blue) lines.  
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Figure 4a & b. Sample alternating reward experiments for single bee-agents of each strategy. The 
upper plots (blue) are the preferences of each bee-agent for T1 rising from an initial 50% value 
(vertical, left hand axis). The lower plots show units foraged by the individual bee-agents during the 
depicted simulation runs (vertical, right hand axis). In these examples the preliminary acquisition 
period during which the bee-agent colony reaches a mean preference for T1 of 70% occurs from time 
step 0 to (a) 932, (b) 1050. From then on, in these particular experiments, the period of reward 
availability swapping between T2 and T1 is set to (a) 1000 time steps (b) 1900 time steps. The 
availability of rewards from T2 and T1 is illustrated by the alternating grey bands that occur at regular 
intervals from the beginning of phase 2 until the end of the experiments at time 3000. 

5.0 Results: Simulation experiments 
5.1 Alternating reward experiments 
The impact on mean reward foraged of varying reward swapping periods during phase 
2 of the simulations is illustrated in figure 5. Swapping periods from 100 time steps 
(approximately 19 swaps during the 1900 time step long phase 2) to 1900 time steps 
(1 single reward swap at the commencement of phase 2 and no subsequent swaps) 
were simulated.  
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At no single value for swapping period in this range could we find any indication that 
the mixed beehive composition (illustrated in solid (red), Fig. 5) was most effective. 
The all Fickle-circumspect strategy hives were consistently the best performers for 
reward swapping periods until the all Deliberative-decisive strategy hives took over as 
the most effective foragers when reward swap period reached 1600 time steps. 
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Figure 5. Mean reward foraged by hives of different composition after 3000 time steps, as compared to 
the length of time (measured in simulation time steps) for which rewards are alternately offered by 
flower-agents of T1 and T2 during simulation phase 2. Mean values based on 50 simulation runs. Error 
bars indicate 95% confidence intervals. (Note, figure 4(a) shows the experiment above conducted at 
oscillation period=1000 for 3 individual bees of each strategy. Figure 4(b) shows the experiment above 
conducted at oscillation period=1900 for 3 individual bees of each strategy.) 
 
5.2 Control experiments 
Defective reward experiments: These simulation runs (N=20) determine the impact of 
defective flower-agents on foraging strategies by providing a source of noise that 
could potentially confuse bee-agents as to which flower type is rewarding. We 
separately considered the 0, 30, 50, 70 and 90% defective flower distributions by 
testing how the four different hive compositions collected nutrition for each 
distribution. 
 
There was no significant difference in the dependent variable of mean reward 
collected for any of the defective reward experiments [One-way ANOVA, d.f. (3,76); 
0% condition F = 1.992, p=0.122; 30% F = 0.886, p=0.452; 50% F = 1.181, p=0.323; 
70% F = 0.087, p=0.967; 90% F = 1.277, p=0.268], showing that the relative foraging 
of the bee-agent hives with different strategies was independent of defective flower 
density effects. 
 
Handling time experiments: In these simulation runs (N = 20) a single reward swap 
occurred at the conclusion of simulation phase 1. From then on, all bee-agents enacted 
their phase 2 change-of-preference strategies. In these runs, every landing on a flower 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.7
03

7.
1 

: P
os

te
d 

28
 M

ar
 2

01
2



 16 

caused a bee-agent to sit idle during the designated flower handling time. 
 
We did not identify any condition where the mixed beehive composition was most 
effective for the flower handling times tested. Flower handling time did not impact on 
the ranking of the different hive compositions for any test condition. 

6.0 Discussion 
The behavioural experiments suggest a complex picture emerges for individual bees 
having to reverse-learn a difficult colour discrimination task. Whilst some bees were 
loyal to one of several strategies, other bees appeared to have flexibility to change 
between different strategies. A classic problem in understanding decision-making in 
insects is, why have colonies evolved different strategies for solving perceptually 
difficult problems [18, 33]? Agent-based simulations allowed us to analyse 
hypotheses in response to this question using our empirical results as a basis. 
 
In the current study, the empirical analyses initially suggested that there were three 
types of bee strategy for collecting nutrition from similarly coloured flowers that may 
alternate in the availability of rewards offered. The potential strategies identified were 
Deliberative-decisive, Fickle-circumspect and Stay strategies. We found that Stay 
strategy bees never outperformed the other two strategies under the test conditions, 
often to the detriment of the hive’s overall efficiency (Fig. 5). This leads us to 
question why evolution might maintain Stay bees. One possible reason is that by 
sticking with their hard-won knowledge in the case where there are occasional 
unrewarding target flowers, Stay bees may be effective foragers. However, the control 
experiment on defective flowers allows us to discount this hypothesis. 
 
Another possibility is that the bees that we classified as Stay bees following our initial 
analysis of the empirical data, may have been Fickle-circumspect bees that just learnt 
at a very slow rate (Fig. 3). The individual-based simulation allows us to conclude 
that under the conditions we tested, bee colonies constrained to the requirement of 
collecting the maximum amount of nutrition per unit time should contain bees with 
only two types of decision-making strategy for complex colour tasks. Following the 
learning of a perceptually difficult task, our results suggest that under repeated and 
frequent changes in a reward situation, it is best to make frequent and small changes 
to preferences in order to keep abreast of the changing environment, without missing 
an opportunity to fine-tune the perceptual system. Even though this fine-tuning may 
not bring the perceptual system fully into line with the new reward situation (Fig. 4), 
the minor adjustments take little time to be swayed in the reverse direction, and so the 
bee may simply revert to earlier preferences when needed using the same mechanism. 
But under situations where changes occur less often, fine-tuning is too slow to 
capitalise. Instead, once sufficient evidence has been gathered that the reward 
situation has changed, a large and decisive change of preferences is a more effective 
way to bring a bee’s perceptually based decisions into line with new foraging 
conditions. 
 
Future work could consider whether there are unsimulated real-world conditions for 
which the presence of Stay bees is of benefit to a beehive. We note that the better the 
Deliberative-decisive bees learn during phase 1 to prefer T1 flowers, the longer it will 
take them to reverse their preferences after a reward swap in favour of T2, or any 
subsequent reversals. This occurs because their preferences for the currently 
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unfavourable flower will be so low that they seldom visit to gain evidence for any 
newly instigated favourability. Perhaps the presence of Stay bees in a hive together 
with Deliberative-decisive bees may be useful if the bees can communicate with one 
another in some circumstances [43]. In particular, a Stay bee loyal to one flower type 
might act as a ‘watch-bee’ consistently monitoring flowers that were known to be 
previously rewarding, ready to inform the hive once they become viable targets. 
 
In complex real environments there may be no way for animals in general to know 
which conditions will be encountered, and thus it could be beneficial for a colony to 
possess individuals with multiple strategies, in agreement with bet hedging 
hypotheses [18, 19]. Figure 5 supports this hypothesis in the case of bees. 
 
Classically it has been appreciated that decision-making in humans can be described 
as either Rationalistic in which a human subject “becomes aware of a problem, posits 
a goal, carefully weighs alternative means, and chooses among them according to his 
estimates of the respective merit with regard to the state of affairs he prefers” [59, 60]. 
This parallels our Deliberative-decisive bee strategy. Alternatively, human subjects 
may use an Incrementalist strategy. This strategy “seeks to adapt decision-making 
strategies to the limited cognitive capacities of decision-makers and to reduce the 
scope and cost of information collection and computation” [59, 60], by making a 
continual stream of micro-adjustments. In the field of Artificial Intelligence, which is 
concerned with decision-making agents, these different strategies are understood in 
terms of the concepts of simple reflex agents that select their behaviour based purely 
on their current situation; and model-based reflex agents that maintain an internal 
model of the part of the world that has been visible to them in the past in order to take 
this into account in their decision-making [61, pp. 48-52].  
 
Our finding that bees demonstrate a variety of decision-making strategies is therefore 
consistent with theories of decision-making in both humans and artificial intelligence. 
This suggests that results from the current bee and simulation experiments have 
widespread implications across a number of fields. Indeed the beehive may, by 
maintaining a diversity of individual level behaviour, be acting as a super-organism 
[62, 63] with respect to its implementation of decision-making for complex problems 
that have no obvious, complete a priori solution. In addition, the behavioural 
experiments found some evidence that individual bees have a capacity to modulate 
their own decision-making approach, and modulation of decisions has previously 
been reported for bumblebees making speed/accuracy judgements for stimuli of 
similar colour [30, 31]. 
 
We conclude that for a perceptually difficult task, honeybees demonstrate a variety of 
methods for adjusting their flower preferences when environmental conditions 
change. Our agent-based simulations of this behaviour reveal that this diversity of 
strategies allows a hive to efficiently collect resources in a complex, dynamic 
environment. 
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