78 research outputs found

    Once a Liar, or How We Should Love the Russian Language

    Full text link
    The article was submitted on 12.09.2014.Review of Irzabekov, V. (2010). Tajna russkogo slova. Zametki nerusskogo cheloveka [Secret of Russian word. Notes of non-Russian man]. 93 p. Moscow: Danilovskij blagovestnik; Irzabekov, V. (2011). Svyataya sila slova. Ne predat' rodnoj yazy'k [Holy power of a word. Not to betray the native language]. 176 p. Moscow: Danilovskij blagovestnik. The article analyzes books on the Russian language by V. Irzabekov which are supposed to count as popular scholarly literature. The author of the aforementioned books means to evoke love for the Russian language in the reader. However, the reviewer proves the pseudo-scholarly nature of the books and draws the reader’s attention to the author’s linguistic incompetence and the unethical character of his reasoning.РСцСнзия Π½Π° ΠΊΠ½ΠΈΠ³ΠΈ: Π˜Ρ€Π·Π°Π±Π΅ΠΊΠΎΠ² Π’. Π’Π°ΠΉΠ½Π° русского слова. Π—Π°ΠΌΠ΅Ρ‚ΠΊΠΈ нСрусского Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. М. : Даниловский благовСстник, 2010. β€” 93 с.; Π˜Ρ€Π·Π°Π±Π΅ΠΊΠΎΠ² Π’. Бвятая сила слова. НС ΠΏΡ€Π΅Π΄Π°Ρ‚ΡŒ Ρ€ΠΎΠ΄Π½ΠΎΠΉ язык. М. : Даниловский благовСстник, 2011. β€” 176 с. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΊΠ½ΠΈΠ³ΠΈ Π’. Π˜Ρ€Π·Π°Π±Π΅ΠΊΠΎΠ²Π° ΠΎ русском языкС, ΠΏΡ€Π΅Ρ‚Π΅Π½Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π½Π° статус Π½Π°ΡƒΡ‡Π½ΠΎ-популярных. Π˜Ρ… Π°Π²Ρ‚ΠΎΡ€ ставит своСй Ρ†Π΅Π»ΡŒΡŽ Π²ΠΎΠ·Π±ΡƒΠ΄ΠΈΡ‚ΡŒ Π² читатСлях любовь ΠΊ русскому языку. Однако Ρ€Π΅Ρ†Π΅Π½Π·Π΅Π½Ρ‚ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ псСвдонаучный Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ рассматриваСмых ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΈ ΠΎΠ±Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»Π΅ΠΉ Π½Π° Π»ΠΈΠ½Π³Π²ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½Π΅ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Π°Π²Ρ‚ΠΎΡ€Π° ΠΈ Π½Π΅ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

    Alternative Opinions about Vaccination in Religious Discourse

    Full text link
    The article was submitted on 10.12.2021.Π˜ΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ΡΡ Ρ€Π΅Ρ‡Π΅Π²Ρ‹Π΅ стратСгии ΠΈ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠΈ Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΠΉ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π² условиях ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ коронавируса. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – рассмотрСниС особСнностСй Ρ€Π΅Ρ‡Π΅Π²ΠΎΠ³ΠΎ повСдСния ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Π½Ρ‚ΠΎΠ² Π² кризисной ситуации ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ исслСдования базируСтся Π½Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ€Π΅Ρ‡Π΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ, Π² Ρ‚ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΠΌΠ΅Ρ€Π΅ прСдставлСнных Π² соврСмСнных Ρ€Π°Π±ΠΎΡ‚Π°Ρ…, посвящСнных исслСдованиям дискурсов Ρ€Π°Π·Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ спСцифики Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΠΉ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ, ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… (Ρ€Π΅Ρ‡Π΅Π²Ρ‹Ρ…) стратСгий ΠΈ Ρ‚Π°ΠΊΡ‚ΠΈΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ Ρ€Π°Π·Π½ΠΎΠΌΡƒ Ρ€Π΅Ρ‡Π΅Π²ΠΎΠΌΡƒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρƒ. Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠ°ΠΌΠΈ исслСдования ΡΠ²Π»ΡΡŽΡ‚ΡΡ тСксты, ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² православных БМИ ΠΈ Π½Π° православных сайтах, ΠΏΡ€ΠΎΠΏΠΎΠ²Π΅Π΄ΠΈ, ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ Π½Π° православных Ρ„ΠΎΡ€ΡƒΠΌΠ°Ρ…, посты Π² соцсСтях. ΠšΠΎΠ½ΡΡ‚Π°Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚ΡΡ полСмичСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π΄Π°Π½Π½ΠΎΠ³ΠΎ сСгмСнта Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΠ³ΠΎ дискурса. Π’ Π½Π΅ΠΌ прСдставлСны Π½Π΅ΠΎΠ»ΠΎΠ³ΠΈΠ·ΠΌΡ‹ с ΠΎΡ†Π΅Π½ΠΎΡ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Π½ΠΎΡ‚Π°Ρ†ΠΈΠ΅ΠΉ: Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π»Π°Π³Π΅Ρ€ΡŒ, псСвдопандСмия, коронобСсиС, коронокризис, ΠΊΠΎΠ²ΠΈΠ΄-диссидСнты, Π°Π½Ρ‚ΠΈΠΏΡ€ΠΈΠ²ΠΈΠ²ΠΎΡ‡Π½ΠΈΠΊΠΈ, антиваксСры, ΠΊΠΎΠ²ΠΈΠ΄ΠΈΠΎΡ‚Ρ‹, антивакс-сСктанты, ΠΊΠΎΠ²ΠΈΠ΄ΠΎΡ„ΠΎΠ±Ρ‹, Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΠ±ΠΎΡ€Ρ†Ρ‹, Π²Π°ΠΊΡ†ΠΈΠ½Π° ΠΊΠ°Π½Π½ΠΈΠ±Π°Π»Π°, вакциноскСптики ΠΈ Π΄Ρ€. ΠžΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π° Ρ‚ΠΈΠΏΠ° адрСсантов: 1) ΠΎΡ‚Ρ€ΠΈΡ†Π°ΡŽΡ‰ΠΈΠ΅ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ профилактичСских ΠΌΠ΅Ρ€ ΠΈ/ΠΈΠ»ΠΈ Π²Π°ΠΊΡ†ΠΈΠ½Π°Ρ†ΠΈΠΈ; 2) ΠΏΡ€ΠΈΠ·Π½Π°ΡŽΡ‰ΠΈΠ΅ Ρ„Π°ΠΊΡ‚ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ профилактичСских ΠΌΠ΅Ρ€ ΠΈ/ΠΈΠ»ΠΈ Π²Π°ΠΊΡ†ΠΈΠ½Π°Ρ†ΠΈΠΈ. Для ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π΅Π½ ΠΊΠΎΠ½Ρ„Ρ€ΠΎΠ½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ‚ΠΈΠΏ общСния, ΠΎΠ½ΠΈ ΠΈΠ·Π±ΠΈΡ€Π°ΡŽΡ‚ Ρ€Π΅Ρ‡Π΅Π²Ρ‹Π΅ стратСгии дискрСдитации ΠΈ манипулирования, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ€Π΅Ρ‡Π΅Π²Ρ‹Ρ… Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠ°Ρ… обвинСния, оскорблСния, ΠΊΠ»Π΅Π²Π΅Ρ‚Ρ‹, сарказма, апСлляции ΠΊ Π°Π²Ρ‚ΠΎΡ€ΠΈΡ‚Π΅Ρ‚Ρƒ ΠΈ Π΄Ρ€. Они Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‚ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ ΠΊΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ общСния, ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Ρ€Π΅Ρ‡Π΅Π²ΡƒΡŽ Π°Π³Ρ€Π΅ΡΡΠΈΡŽ. Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ„ΠΎΠ±ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Π½Ρ‚Ρ‹ этой Π³Ρ€ΡƒΠΏΠΏΡ‹, обусловлСны Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ΠΌ сотСриологичСского ΠΈ эсхатологичСского ΡƒΡ‡Π΅Π½ΠΈΠΉ Π¦Π΅Ρ€ΠΊΠ²ΠΈ. АдрСсанты Π²Ρ‚ΠΎΡ€ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ€Π΅Ρ‡Π΅Π²ΡƒΡŽ ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡŽ убСТдСния, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅ΠΌΡƒΡŽ Ρ€Π΅Ρ‡Π΅Π²Ρ‹ΠΌΠΈ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠ°ΠΌΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ, Ρ€Π°Π·ΡŠΡΡΠ½Π΅Π½ΠΈΡ, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΎΡ‡Π΅Π²ΠΈΠ΄Ρ†Π΅Π² ΠΈ Π΄Ρ€. Π£ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Π½Ρ‚ΠΎΠ² этой Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Π° установка Π½Π° бСсконфликтноС ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅.This article examines speech strategies and tactics in religious communication in the context of the coronavirus pandemic. The purpose of the work is to consider the features of the speech behaviour of communicants during the pandemic crisis. The research methodology is based on the theory of speech communication to some extent present in modern works on the study of discourses of various types, the study of the peculiarities of religious communication, communicative/ speech strategies, and tactics applied to different speech material. The researcher refers to texts published in Orthodox media and on Orthodox websites: sermons, comments in Orthodox forums, and posts in social networks. As a result, the author reveals the polemical nature of this segment of religious discourse. For instance, it contains neologisms with evaluative connotations, such as Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π»Π°Π³Π΅Ρ€ΡŒ (digital concentration camp), псСвдопандСмия (pseudo-pandemic), коронобСсиС (corona-frenzy), коронокризис (corona-crisis), ΠΊΠΎΠ²ΠΈΠ΄-диссидСнты (covid-dissidents), Π°Π½Ρ‚ΠΈΠΏΡ€ΠΈΠ²ΠΈΠ²ΠΎΡ‡Π½ΠΈΠΊΠΈ (anti-vaccinators), антиваксСры (antivaxers), ΠΊΠΎΠ²ΠΈΠ΄ΠΈΠΎΡ‚Ρ‹ (covidiots), антивакс-сСктанты (anti-vax sectarians), ΠΊΠΎΠ²ΠΈΠ΄ΠΎΡ„ΠΎΠ±Ρ‹ (covidophobes), Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΠ±ΠΎΡ€Ρ†Ρ‹ (vaccine fighters), Π²Π°ΠΊΡ†ΠΈΠ½Π° ΠΊΠ°Π½Π½ΠΈΠ±Π°Π»Π° (cannibal vaccine), вакциноскСптики (vaccine sceptics), etc. The author characterises two types of addressees: 1) those denying the existence of the pandemic and/or the need for preventive measures and/or vaccination; 2) those recognising the fact of the pandemic and/or the need for preventive measures and/or vaccination. The former are characterised by a confrontational type of communication, as they choose strategies of discrediting and manipulation by means of accusations, insults, slander, sarcasm, appeals to β€œauthority”, etc. They violate the principles of cooperative communication and show verbal aggression. The various phobias that the communicants of this group demonstrate are due to a misunderstanding of the soteriological and eschatological teachings of the Church. The addressees of the second group use a speech strategy of persuasion through interpretation, explanation, references to their own experience, and the authority of the Church. The communicants of this group obviously aim for conflict-free communication

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ формирования структуры ΠΈ свойств ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²Ρ‹Ρ… сталСй с Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ, Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ процСссы ΠΏΡ€ΠΈ спСкании

    Get PDF
    Effect of activating the sintering process of powder steel alloyed with nickel or chromium by grinding the initial powders and introducing alkali metal compounds was investigated. The kinetics of grinding the initial iron powders, Cr30, and a mixture of iron powders with 4 % nickel was studied. It is shown that, depending on the hardness of the powder, it is grinded in three or two stages. When grinding more hard powders, there is no stage of intensive deformation of particles and an increase in their size. Crystalline lattice defects resulting from grinding of powders accelerate diffusion processes. This reduces sintering temperature by 100–200 Β°Π‘ compared to the sintering temperature of steels from the initial powders, contributes to a homogeneous structure, reduces porosity by 4–17 %, and increase strength of powder steels by 1.5–1.6 times. The mechanism of the effect of sodium bicarbonate on the acceleration of diffusion of carbon, nickel and chromium into iron has been established. With the introduction of sodium bicarbonate under the action of water vapor, formed upon its decomposition to carbonate, thin oxide films are formed on iron particles, which are actively recovered in a protective-recovering atmosphere during sintering. This leads to formation of a metal contact between the particles, acceleration of the self-diffusion of iron atoms and the diffusion of alloying additives into iron by 5–7 times, depending on the sintering temperature and the amount of added additive. Sodium forms nanodispersed complex compounds of the ferritic type Na3Fe5O9 along the grain boundaries of the iron base, which provide grain refinement and the formation of a homogeneous structure. Changes in the structure of powder steel with the introduction of sodium bicarbonate cause an increase in its strength by 1.5–1.7 times. The results can be used to obtain structural products from alloyed powder steels.ИсслСдовано влияниС активирования процСсса спСкания ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ стали, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½ΠΈΠΊΠ΅Π»Π΅ΠΌ ΠΈΠ»ΠΈ Ρ…Ρ€ΠΎΠΌΠΎΠΌ, Π·Π° счСт диспСргирования исходных ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΈ ввСдСния соСдинСний Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π»Π»Π°. Π˜Π·ΡƒΡ‡Π΅Π½Π° ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° Ρ€Π°Π·ΠΌΠΎΠ»Π° исходных ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π°, Π₯30 ΠΈ смСси ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π° с 4 % никСля. Показано, Ρ‡Ρ‚ΠΎ Π² зависимости ΠΎΡ‚ твСрдости ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΠ΅ происходит Π² Ρ‚Ρ€ΠΈ ΠΈΠ»ΠΈ Π΄Π²Π΅ стадии. ΠŸΡ€ΠΈ Ρ€Π°Π·ΠΌΠΎΠ»Π΅ Π±ΠΎΠ»Π΅Π΅ Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² отсутствуСт стадия интСнсивной Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ частиц ΠΈ увСличСния ΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€Π°. Π”Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ кристалличСской Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΡ€ΠΈ Ρ€Π°Π·ΠΌΠΎΠ»Π΅ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ², ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‚ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ процСссы, Ρ‡Ρ‚ΠΎ способствуСт ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ спСкания Π½Π° 100–200 Β°Π‘ Π½ΠΈΠΆΠ΅ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ спСкания сталСй ΠΈΠ· исходных ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ структуры, сниТСнию Π½Π° 4–17 % пористости, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ прочности ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²Ρ‹Ρ… сталСй Π² 1,5– 1,6 Ρ€Π°Π·Π°. УстановлСн ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ воздСйствия Π±ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π° натрия Π½Π° ускорСниС Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°, никСля ΠΈ Ρ…Ρ€ΠΎΠΌΠ° Π² ΠΆΠ΅Π»Π΅Π·ΠΎ. ΠŸΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π±ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π° натрия ΠΏΠΎΠ΄ дСйствиСм ΠΏΠ°Ρ€ΠΎΠ² Π²ΠΎΠ΄Ρ‹, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΡ€ΠΈ Π΅Π³ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π΄ΠΎ ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π°, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ‚ΠΎΠ½ΠΊΠΈΠ΅ оксидныС ΠΏΠ»Π΅Π½ΠΊΠΈ Π½Π° ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… частицах, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Π² Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎ-Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ атмосфСрС ΠΏΡ€ΠΈ спСкании. Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ мСталличСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΌΠ΅ΠΆΠ΄Ρƒ частицами, ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ самодиффузии Π°Ρ‚ΠΎΠΌΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π° ΠΈ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π΄ΠΎΠ±Π°Π²ΠΎΠΊ Π² ΠΆΠ΅Π»Π΅Π·ΠΎ Π² 5–7 Ρ€Π°Π· Π² зависимости ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ спСкания ΠΈ количСства Π²Π²ΠΎΠ΄ΠΈΠΌΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ. Натрий ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΠΏΠΎ Π³Ρ€Π°Π½ΠΈΡ†Π°ΠΌ Π·Π΅Ρ€Π΅Π½ ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠΉ основы нанодиспСрсныС слоТныС соСдинСния Ρ„Π΅Ρ€Ρ€ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Na3Fe5O9, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΠ΅ Π·Π΅Ρ€Π΅Π½ ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ структуры. ИзмСнСния Π² структурС ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ стали ΠΏΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π±ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π° натрия ΠΎΠ±ΡƒΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Π΅Π΅ прочности Π² 1,5–1,7 Ρ€Π°Π·Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ конструкционных ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²Ρ‹Ρ… сталСй

    ВлияниС тСрмичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° структуру ΠΈ свойства псСвдосплава ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²Π°Ρ углСродистая ΡΡ‚Π°Π»ΡŒ – ΠΌΠ΅Π΄Π½Ρ‹ΠΉ сплав, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ

    Get PDF
    The paper presents the results of studies of the effect of heat treatment regimes on changes in the structure and properties of steel-copper alloy pseudo-alloys obtained by infiltration. It is shown that, depending on the composition and initial density of the steel skeleton, the strength of the material increases by 1.3–1.8 times, the hardening effect is realized when the carbon content in the steel skeleton is 0.3–1.5 % and is achieved due to changes in the structure and phase composition of the steel base and copper phase. It has been established that during heating for quenching and during tempering, redistribution of carbon occurs in the iron phase, which is more pronounced in the frame of the pseudo-alloy made of medium-carbon steel. The formation of a β€œcrust” structure in the grains of the skeleton is noted, while in the skeleton made of medium-carbon steel this occurs at a tempering temperature of 200 Β°C, in low-carbon steel – at a temperature of 500–650 Β°C. In a high-carbon steel skeleton, carbon stratification in the grain body is less pronounced. An increase in the strength of pseudo-alloys at tempering temperatures of 500–650 Β°C is associated with the formation of the Ξ±β€²-phase, the precipitation of the Fe3C carbide phase and the metastable Fe2C phase in the iron phase, as well as the precipitation of dispersed phases Fe4Cu3, Fe4Cu3, Ξ·-Cu6Sn5 and Ξ΄-Cu3Sn8 in the copper phase. Due to the precipitation of phases, the microhardness of the infiltrate in the form of copper in pseudo-alloys after tempering at 550 Β°C increased from 820–880 to 950–980 MPa, in the form of tin bronze – from 1450 to 1750 MPa. The use of heat treatment leads to an increase not only in the strength, but also in the tribotechnical properties of the pseudo-alloy: the friction coefficient of the pseudo-alloy with a frame of 80 % density made of FeC0.8 steel decreases to 0.008–0.009, the seizure pressure doubles and the wear resistance increases by more than 2.5 times.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований влияния Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² тСрмичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ (ВО) Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ структуры ΠΈ свойств псСвдосплавов ΡΡ‚Π°Π»ΡŒ – ΠΌΠ΅Π΄Π½Ρ‹ΠΉ сплав, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ. Показано, Ρ‡Ρ‚ΠΎ Π² зависимости ΠΎΡ‚ состава ΠΈ исходной плотности ΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ каркаса ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ Π² 1,3–1,8 Ρ€Π°Π·Π°. Π­Ρ„Ρ„Π΅ΠΊΡ‚ упрочнСния рСализуСтся ΠΏΡ€ΠΈ содСрТании ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² ΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ каркасС 0,3–1,5 % ΠΈ достигаСтся вслСдствиС измСнСния структуры ΠΈ Ρ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ состава ΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ основы ΠΈ ΠΌΠ΅Π΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Π² процСссС Π²Ρ‹Π΄Π΅Ρ€ΠΆΠΊΠΈ ΠΏΡ€ΠΈ Π½Π°Π³Ρ€Π΅Π²Π΅ ΠΏΠΎΠ΄ Π·Π°ΠΊΠ°Π»ΠΊΡƒ ΠΈ ΠΏΡ€ΠΈ отпускС происходит пСрСраспрСдСлСниС ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠΉ Ρ„Π°Π·Π΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ Π² каркасС псСвдосплава ΠΈΠ· срСднСуглСродистой стали. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² Π·Π΅Ρ€Π½Π°Ρ… каркаса Β«ΠΊΠΎΡ€ΠΊΠΎΠ²ΠΎΠΉΒ» структуры, ΠΏΡ€ΠΈ этом Π² каркасС ΠΈΠ· срСднСуглСродистой стали это происходит ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ отпуска 200 Β°Π‘, ΠΈΠ· низкоуглСродистой – ΠΏΡ€ΠΈ 500–650 Β°Π‘. Π’ каркасС ΠΈΠ· высокоуглСродистой стали расслоСниС ΠΏΠΎ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Ρƒ Π² Ρ‚Π΅Π»Π΅ Π·Π΅Ρ€Π½Π° ΠΌΠ΅Π½Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ прочности псСвдосплавов ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… отпуска 500–650 Β°Π‘ связано с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ξ±β€²-Ρ„Π°Π·Ρ‹, Π²Ρ‹ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ°Ρ€Π±ΠΈΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ Fe3C ΠΈ ΠΌΠ΅Ρ‚Π°ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ„Π°Π·Ρ‹ Fe2C Π² ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠΉ Ρ„Π°Π·Π΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ с Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ диспСрсных Ρ„Π°Π· Fe4Cu3, Ξ·-Cu6Sn5 ΠΈ Ξ΄-Cu3Sn8 Π² ΠΌΠ΅Π΄Π½ΠΎΠΉ Ρ„Π°Π·Π΅. Благодаря Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ„Π°Π· ΠΌΠΈΠΊΡ€ΠΎΡ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚Π° Π² Π²ΠΈΠ΄Π΅ ΠΌΠ΅Π΄ΠΈ Π² псСвдосплавах послС отпуска ΠΏΡ€ΠΈ 550 Β°Π‘ ΠΏΠΎΠ²Ρ‹ΡΠΈΠ»Π°ΡΡŒ с 820–880 ΠΏΠΎ 950–980 МПа, Π² Π²ΠΈΠ΄Π΅ оловянной Π±Ρ€ΠΎΠ½Π·Ρ‹ – с 1450 ΠΏΠΎ 1750 МПа. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ тСрмичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ прочности, Π½ΠΎ ΠΈ триботСхничСских свойств псСвдосплава: коэффициСнт трСния псСвдосплава с каркасом ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 80 % ΠΈΠ· стали ПК80 сниТаСтся Π΄ΠΎ 0,008–0,009, ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ схватывания возрастаСт Π² 2 Ρ€Π°Π·Π° ΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² 2,5 Ρ€Π°Π·Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ ΠΈΠ·Π½ΠΎΡΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ

    ЗакономСрности упрочнСния псСвдосплавов ΡΡ‚Π°Π»ΡŒ – ΠΌΠ΅Π΄Π½Ρ‹ΠΉ сплав, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ, ΠΏΡ€ΠΈ горячСй пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ

    Get PDF
    The influence of the regimes of plastic deformation of steel – copper alloy pseudo-alloys obtained by infiltration on their structure, mechanical properties and anisotropy of properties is investigated. It has been established that hot forging of pseudo-alloys at a temperature of 700–950 Β°C provides an increase in strength by 1.5–3 times, impact strength by 1.5–2.5 times, plasticity by 1.5–2 %, and at 1100–1150 Β°Π‘ (above the melting point of copper) – leads to cracking of the material. It is shown that the properties of pseudo-alloys based on steel alloyed with chromium are lower than those based on steel alloyed with nickel, which is associated with the formation of chromium oxides due to its increased affinity for oxygen. The formation of macro-texture in pseudo-alloys after hot stamping has been established, which leads to secondary anisotropy of properties, the level of which is determined by the degree of deformation and temperature, but does not exceed 15–20 %. The deformation curve of the pseudo-alloy during hot forging was constructed, which revealed the optimum temperature (700–900 Β°Π‘) and the limiting degree of deformation (65 %) depending on the composition of the pseudo-alloy. With an increase in the degree of deformation, microcracks form at the interface between the iron and copper phases, which in turn leads to a decrease in strength, ductility, as well as a 1.5–2-fold decrease in the impact strength of pseudo-alloys with a copper phase content of 15 % and destruction of pseudo-alloys with a 25 % copper content phases, in which the length of interphase iron-copper boundaries is much greater. The achieved mechanical properties of hot-forged steel-copper alloy pseudo-alloys make it possible to use them for parts of heavily loaded friction units, as well as parts for structural purposes. ИсслСдовано влияниС Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ псСвдосплавов ΡΡ‚Π°Π»ΡŒ – ΠΌΠ΅Π΄Π½Ρ‹ΠΉ сплав Π½Π° ΠΈΡ… структуру, мСханичСскиС свойства ΠΈ Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΡŽ свойств. УстановлСно, Ρ‡Ρ‚ΠΎ горячая ΡˆΡ‚Π°ΠΌΠΏΠΎΠ²ΠΊΠ° псСвдосплавов ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… 700–950 Β°Π‘ обСспСчиваСт ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ прочности Π² 1,5–3 Ρ€Π°Π·Π°, ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ вязкости – Π² 1,5–2,5 Ρ€Π°Π·Π°, пластичности – Π½Π° 1,5–2 %, Π° ΠΏΡ€ΠΈ 1100–1150 Β°Π‘ (Π²Ρ‹ΡˆΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ плавлСния ΠΌΠ΅Π΄ΠΈ) – ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π°ΡΡ‚Ρ€Π΅ΡΠΊΠΈΠ²Π°Π½ΠΈΡŽ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Показано, Ρ‡Ρ‚ΠΎ свойства псСвдосплавов Π½Π° основС стали, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠΎΠΌ, Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π½Π° основС стали, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½ΠΈΠΊΠ΅Π»Π΅ΠΌ, Ρ‡Ρ‚ΠΎ связано с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ оксидов Ρ…Ρ€ΠΎΠΌΠ° вслСдствиС Π΅Π³ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ сродства ΠΊ кислороду. УстановлСно ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ макротСкстуры Π² псСвдосплавах послС горячСй ΡˆΡ‚Π°ΠΌΠΏΠΎΠ²ΠΊΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ свойств, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ опрСдСляСтся ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ ΠΈ Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 15–20 %. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Π° дСформационная кривая псСвдосплава ΠΏΡ€ΠΈ горячСй ΡˆΡ‚Π°ΠΌΠΏΠΎΠ²ΠΊΠ΅, Π²Ρ‹ΡΠ²ΠΈΠ²ΡˆΠ°Ρ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ (700–900 Β°Π‘) ΠΈ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ (65 %) Π² зависимости ΠΎΡ‚ состава псСвдосплава. ΠŸΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ стСпСни Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ происходит ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠΉ ΠΈ ΠΌΠ΅Π΄Π½ΠΎΠΉ Ρ„Π°Π·, Ρ‡Ρ‚ΠΎ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сниТСнию прочности, пластичности, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² 1,5–2 Ρ€Π°Π·Π° ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ вязкости псСвдосплавов с содСрТаниСм ΠΌΠ΅Π΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ 15 % ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ псСвдосплавов с содСрТаниСм ΠΌΠ΅Π΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ 25 %, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΡ„Π°Π·Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ΅Π΄Π½Ρ‹Ρ… Π³Ρ€Π°Π½ΠΈΡ† Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ большС. ДостигнутыС мСханичСскиС свойства Π³ΠΎΡ€ΡΡ‡Π΅ΡˆΡ‚Π°ΠΌΠΏΠΎΠ²Π°Π½Π½Ρ‹Ρ… псСвдосплавов ΡΡ‚Π°Π»ΡŒ – ΠΌΠ΅Π΄Π½Ρ‹ΠΉ сплав ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… для Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ тяТСлонагруТСнных ΡƒΠ·Π»ΠΎΠ² трСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ конструкционного назначСния

    Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ свойства ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Π΄Π½ΠΎ-Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² (ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊΠΎΠΌ П.А. ВитязСм)

    Get PDF
    The research results of the influence of graphite content, type and dispersion on the structure, mechanical and physical properties of copperβ€”graphite composite material are presented. It is shown that in the sintering process, when the content of grade GL graphite is 1, 5, 7 %, shrinkage is 5.7; 2.4 and 0.6 %, respectively, with 20 and 30 % β€” no volumetric changes. In copperβ€”graphite material, when the content of grade MG graphite is less than 10 %, a growth of samples of 1β€”1.6 % is observed; when the graphite content is higher, the volume practically does not change. With a graphite content of more than 20 %, regardless of its grade and dispersion, the strength of copperβ€”graphite material sharply decreases due to both a reduction of the metal contact area and a transition of the material structure from frame-metal to matrix. In a material with grade MG graphite with the dispersion of 140 and 65 Β΅m, multiple microcracks are formed in the deformation process. When the content of grade MG graphite is 10 %, the electrical resistivity of copper-graphite material is equal to 11β€”13β€’108 Ohmβ€’m, when it is 30 %, the electrical resistivity is equal to 136β€”140β€’108 Ohmrm; when the content of grade GL graphite β€” 8 and 18β€’108 Ohmβ€’m, respectively.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований влияния содСрТания, Π²ΠΈΠ΄Π° ΠΈ диспСрсности Π³Ρ€Π°Ρ„ΠΈΡ‚Π° Π½Π° структуру, мСханичСскиС ΠΈ элСктрофизичСскиС свойства ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Π΄Π½ΠΎ-Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Показано, Ρ‡Ρ‚ΠΎ Π² процСссС спСкания ΠΏΡ€ΠΈ содСрТании Π³Ρ€Π°Ρ„ΠΈΡ‚Π° ΠΌΠ°Ρ€ΠΊΠΈ Π“Π› 1, 5, 7 % усадка составляСт 5,7; 2,4 ΠΈ 0,6 % соотвСтствСнно, ΠΏΡ€ΠΈ 20 ΠΈ 30 % - ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹Π΅ измСнСния ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. Π’ ΠΌΠ΅Π΄Π½ΠΎ-Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠ²ΠΎΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ с Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠΌ ΠΌΠ°Ρ€ΠΊΠΈ ΠœΠ“ ΠΌΠ΅Π½Π΅Π΅ 10 % Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ рост ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² 1-1,6 %, ΠΏΡ€ΠΈ большСм содСрТании Π³Ρ€Π°Ρ„ΠΈΡ‚Π° ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ практичСски Π½Π΅ происходит. ΠŸΡ€ΠΈ содСрТании Π³Ρ€Π°Ρ„ΠΈΡ‚Π° Π±ΠΎΠ»Π΅Π΅ 20 %, нСзависимо ΠΎΡ‚ Π΅Π³ΠΎ ΠΌΠ°Ρ€ΠΊΠΈ ΠΈ диспСрсности, происходит Ρ€Π΅Π·ΠΊΠΎΠ΅ сниТСниС прочности ΠΌΠ΅Π΄Π½ΠΎ-Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° вслСдствиС ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ мСталличСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° структуры ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈΠ· каркасно-мСталличСской Π² ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ. Π’ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ с Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠΌ ΠΌΠ°Ρ€ΠΊΠΈ ΠœΠ“ Π΄ΠΈΡΠΏΠ΅Ρ€ΡΠ½ΠΎΡΡ‚ΡŒΡŽ 140 ΠΈ 65 ΠΌΠΊΠΌ Π² процСссС Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ происходит мноТСствСнноС ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€Π΅Ρ‰ΠΈΠ½. УдСльноС элСктросопротивлСниС ΠΌΠ΅Π΄Π½ΠΎ-Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° с содСрТаниСм Π³Ρ€Π°Ρ„ΠΈΡ‚Π° ΠΌΠ°Ρ€ΠΊΠΈ ΠœΠ“ 10 % составляСт 11β€”13-108 ΠžΠΌβ€’ΠΌ, ΠΏΡ€ΠΈ 30 % β€” 136β€”140β€’108 ΠžΠΌβ€’ΠΌ, Π³Ρ€Π°Ρ„ΠΈΡ‚Π° ΠΌΠ°Ρ€ΠΊΠΈ Π“Π› β€” 8 ΠΈ 18β€’108 ΠžΠΌβ€’ΠΌ соотвСтствСнно

    Ecological and biological features of Triglochin maritima L. in the biotopes of the littoral zone with different degree of flooding on the coast of the White Sea

    Get PDF
    The study of Triglochin maritima L. was carried out on the Pomor (western) coast of the White Sea, in the Republic of Karelia (64Β°22'81"N, 35Β°93'14"E). Morphological analysis of aboveground and underground parts of the clones was performed on virginal plants. Anatomical analysis of leaf sheaths of the current year shoots, rhizomes and adventitious roots was carried out. The viability of pollen was assessed by determining the relative share of normally developed and malformed pollen grains. The content of heavy metals was determined in the soil, sea water and plant samples. The study was carried out on a model transect in the littoral zone on three test plots representing the lower littoral; the middle and the upper littoral zones. Adaptation to wave and storm impact was manifested in a well-developed system of underground organs. In the lower littoral, underground part surpasses the aboveground vegetative organs in terms of the mass and the formation of mechanical tissues. This allows the plants to anchor stronger in the substrate. Pollen analysis confirmed the adaptability of T. maritima plants to the conditions of the lower littoral by a high percentage of normal and, consequently, fertile pollen, which ensures sexual reproduction of the species. T. maritima can be considered as a Fe hyperaccumulator as the plant accumulates very high levels of Fe (22–34 g kg-1), especially in the lower and middle littoral zones, both in underground and aboveground organs. The ability of T. maritima plants to actively deposit metals was revealed on the basis of the coefficient of biological absorption of metals and makes it possible to suggest potential possibility of using the species in phytoremediation technologies on coastal territories

    Гуманитаризация тСхничСского унивСрситСтского образования: эффСктивныС стратСгии ΠΈ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ

    Full text link
    Last changes in the education system impose certain requirements for the training of technical specialties students, taking into account individual – personal characteristics, social orders of regions, countries, as well as international integration processes. Due to such trends, the humanitarization of technical education can become multidimensional and predictive. The article is aimed at identifying and analyzing the dominant strategies for the humanitarization of higher education of technical students through the prism of universal competencies. The set of methods was used to the analysis of the humanitarization’s strategies of higher education of technical students: the case-study method, the object – Ural Federal University (Ekaterinburg, Russia); method for obtaining and analyzing primary and secondary data. Based on the system and structural-functional approaches, not only strategies are considered, but also such forms of their implementation as purposeful efforts (in educational activities) and spontaneous practices (in extracurricular activities). Research results: the ratio of "4 C's" competencies, the group of universal competencies and universal competencies in accordance with the Federal State Educational Standard for Higher Education (version 3++) is found; taking into account the data from the Atlas of new professions, the connection of the competence group "4 C's" with soft skills required in the professions of technical industries is revealed; effective strategies and practices are identified, including the mandatory bachelor's degree "core" of humanities studies for technical specialties; the role of the center for the universal competencies development as a university structural unit for the promotion of humanitarian minors is justified; the resource of the institute of mentoring and supervision, student scientific, social, and creative associations in the formation of the humanitarian environment of the university is revealed. Β© 2020 LLC Ecological Help. All rights reserved
    • …
    corecore