33 research outputs found

    Epidemiologic analysis of families with isolated anorectal malformations suggests high prevalence of autosomal dominant inheritance

    Get PDF
    Background: Anorectal malformations (ARM) are rare abnormalities that occur in approximately 1 in 3000 live births with around 40% of patients presenting with isolated forms. Multiple familial cases reported, suggest underlying genetic factors that remain largely unknown. The recurrence in relatives is considered rare, however transmission rates of ARM by affected parents have never been determined before. The inheritance pattern of ARM was investigated in our database of patients with isolated ARM. Results: Within our cohort of 327 patients with isolated ARM we identified eight adult patients from eight families who had in total 16 children with their healthy spouse. Of these ten had ARM, resulting in a recurrence risk of approximately one in two live births (10 of 16; 62%). From 226 families with 459 siblings we found two affected siblings in five families. Hence, the recurrence risk of ARM among siblings is approximately one in 92 live births (5 of 459; 1.0%). Conclusions: Comparing the observed recurrence risk in our cohort with the prevalence in the general population, we see a 1500-fold increase in recurrence risk for offspring and a 32-fold increase if a sibling is affected. The recurrence risk of approximately 62% indicates an autosomal dominant mode of inheritance. Reliable figures on recurrence of ARM are becoming increasingly important since improved surgical techniques are able to maintain sexual function resulting in more offspring of patients with ARM. These data allow more precise counseling of families with ARM and support the need for genetic studies

    A genome-wide association study with tissue transcriptomics identifies genetic drivers for classic bladder exstrophy

    Get PDF
    Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility

    Whole exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association

    Get PDF
    Congenital abnormalities of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease and they are the most frequent cause of end-stage renal disease in children in the US. However, its genetic etiology remains mostly elusive. VACTERL association is a rare disorder that involves congenital abnormalities in multiple organs including the kidney and urinary tract in up to 60% of the cases. By homozygosity mapping and whole exome resequencing combined with high-throughput mutation analysis by array-based multiplex PCR and next-generation sequencing, we identified recessive mutations in the gene TNF receptor-associated protein 1 (TRAP1) in two families with isolated CAKUT and three families with VACTERL association. TRAP1 is a heat shock protein 90-related mitochondrial chaperone possibly involved in antiapoptotic and endoplasmic reticulum-stress signaling. Trap1 is expressed in renal epithelia of developing mouse kidney E13.5 and in the kidney of adult rats, most prominently in proximal tubules and in thick medullary ascending limbs of Henle’s loop. Thus, we identified mutations in TRAP1 as highly likely causing CAKUT or CAKUT in VACTERL association

    De Novo Duplication of 11p15 Associated With Congenital Diaphragmatic Hernia

    No full text
    Background: Congenital diaphragmatic hernia (CDH) is a rare defect of the diaphragm commonly associated with high morbidity and mortality due to lung hypoplasia and pulmonary hypertension. Although in 70% of patients the etiology of a CDH remains unknown, a multitude of causative chromosomal aberrations has been identified.Case presentation: We describe the first case of isolated 11p15 duplication with CDH. The 18.6 Mb large duplication affected 285 RefSeq genes and included the Beckwith–Wiedemann (BWS)-associated imprinting control region 2 (ICR2, KCNQ1OT1 TSS DMR), whereas the ICR1 (H19 TSS DMR) was not affected. We were able to demonstrate de novo occurrence of the duplication. The paternal origin of the chromosomal material was detected by methylation testing the ICR2. Corresponding to other patients with duplications of the paternal ICR2 copy, a BWS phenotype is not present.Conclusions: The patient presented here together with the review of four other cases from the literature indicate an association between duplications of the chromosomal region 11p15 and developmental defects of the diaphragm. Thus, we suggest duplications of 11p15 as a rare cause of CDH. This association may or may not appear in the context of BWS depending on the extent of the duplication and the imprinting status. Hence, a genetic workup should be performed in patients with CDH, particularly when other abnormalities are noted

    The Role of De Novo Variants in Formation of Human Anorectal Malformations

    No full text
    Anorectal malformations (ARM) represent a rare birth defect of the hindgut that occur in approximately 1 in 3000 live births. Around 60% of ARM occur with associated anomalies including defined genetic syndromes and associations with chromosomal aberrations. The etiology of ARM is heterogeneous, with the individual environmental or genetic risk factors remaining unknown for the majority of cases. The occurrence of familial ARM and previous epidemiologic analysis suggest autosomal dominant inheritance in a substantial subset of ARM patients. The implicated mortality and reduced fecundity in patients with ARM would lead to allele loss. However, mutational de novo events among the affected individuals could compensate for the evolutionary pressure. With the implementation of exome sequencing, array-based molecular karyotyping and family-based rare variant analyses, the technologies are available to identify the respective factors. This review discusses the identification of disease-causing variants among individuals with ARM. It highlights the role of mutational de novo events

    Modelling human lower urinary tract malformations in zebrafish

    No full text
    Abstract Advances in molecular biology are improving our understanding of the genetic causes underlying human congenital lower urinary tract (i.e., bladder and urethral) malformations. This has recently led to the identification of the first disease-causing variants in the gene BNC2 for isolated lower urinary tract anatomical obstruction (LUTO), and of WNT3 and SLC20A1 as genes implicated in the pathogenesis of the group of conditions called bladder-exstrophy-epispadias complex (BEEC). Implicating candidate genes from human genetic data requires evidence of their influence on lower urinary tract development and evidence of the found genetic variants’ pathogenicity. The zebrafish (Danio rerio) has many advantages for use as a vertebrate model organism for the lower urinary tract. Rapid reproduction with numerous offspring, comparable anatomical kidney and lower urinary tract homology, and easy genetic manipulability by Morpholino®-based knockdown or CRISPR/Cas editing are among its advantages. In addition, established marker staining for well-known molecules involved in urinary tract development using whole-mount in situ hybridization (WISH) and the usage of transgenic lines expressing fluorescent protein under a tissue-specific promoter allow easy visualization of phenotypic abnormalities of genetically modified zebrafish. Assays to examine the functionality of the excretory organs can also be modeled in vivo with the zebrafish. The approach of using these multiple techniques in zebrafish not only enables rapid and efficient investigation of candidate genes for lower urinary tract malformations derived from human data, but also cautiously allows transferability of causality from a non-mammalian vertebrate to humans
    corecore