20 research outputs found

    Biocompatible Phosphorus Containing Photopolymers

    Get PDF

    Headache onset after vaccination against SARS-CoV-2: A systematic literature review and meta-analysis

    Get PDF
    Background Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are used to reduce the risk of developing Coronavirus Disease 2019 (COVID-19). Despite the significant benefits in terms of reduced risk of hospitalization and death, different adverse events may present after vaccination: among them, headache is one of the most common, but nowadays there is no summary presentation of its incidence and no description of its main features. Methods We searched PubMed and EMBASE covering the period between January 1(st) 2020 and August 6(th), 2021, looking for record in English and with an abstract and using three main search terms (with specific variations): COVID-19/SARS-CoV-2; Vaccination; headache/adverse events. We selected manuscript including information on subjects developing headache after injection, and such information had to be derived from a structured form (i.e. no free reporting). Pooled estimates and 95% confidence intervals were calculated. Analyses were carried out by vaccine vs. placebo, by first vs. second dose, and by mRNA-based vs. "traditional" vaccines; finally, we addressed the impact of age and gender on post-vaccine headache onset. Results Out of 9338 records, 84 papers were included in the review, accounting for 1.57 million participants, 94% of whom received BNT162b2 or ChAdOx1. Headache was generally the third most common AE: it was detected in 22% (95% CI 18-27%) of subjects after the first dose of vaccine and in 29% (95% CI 23-35%) after the second, with an extreme heterogeneity. Those receiving placebo reported headache in 10-12% of cases. No differences were detected across different vaccines or by mRNA-based vs. "traditional" ones. None of the studies reported information on headache features. A lower prevalence of headache after the first injection of BNT162b2 among older participants was shown. Conclusions Our results show that vaccines are associated to a two-fold risk of developing headache within 7 days from injection, and the lack of difference between vaccine types enable to hypothesize that headache is secondary to systemic immunological reaction than to a vaccine-type specific reaction. Some descriptions report onset within the first 24 h and that in around one-third of the cases, headache has migraine-like features with pulsating quality, phono and photophobia; in 40-60% of the cases aggravation with activity is observed. The majority of patients used some medication to treat headache, the one perceived as the most effective being acetylsalicylic acid

    Hard Block Degradable Polycarbonate Urethanes : Promising Biomaterials for Electrospun Vascular Prostheses

    No full text
    We report biodegradable thermoplastic polyurethanes for soft tissue engineering applications, where frequently used carboxylic acid ester degradation motifs were substituted with carbonate moieties to achieve superior degradation properties. While the use of carbonates in soft blocks has been reported, their use in hard blocks of thermoplastic polyurethanes is unprecedented. Soft blocks consist of poly(hexamethylene carbonate), and hard blocks combine hexamethylene diisocyanate with the newly synthesized cleavable carbonate chain extender bis(3-hydroxypropylene)carbonate (BHPC), mimicking the motif of poly(trimethylene carbonate) with highly regarded degradation properties. Simultaneously, the mechanical benefits of segmented polyurethanes are exploited. A lower hard block concentration in BHPC-based polymers was more suitable for vascular grafts. Nonacidic degradation products and hard block dependent degradation rates were found. Implantation of BHPC-based electrospun degradable vascular prostheses in a small animal model revealed high patency rates and no signs of aneurysm formations. Specific vascular graft remodeling and only minimal signs of inflammatory reactions were observed.</p

    Light-responsive hybrids based on carbon nanotubes with covalently attached PHEMA-g-PCL brushes

    No full text
    Carbon nanotube (CNT)-based materials allow for the direct conversion of light into heat and then into mechanical force in the so-called photo-mechanical effect. This effect has been observed almost solely in the form of polymer (nano)composites, where CNTs act as active fillers. To overcome the issue with heterogeneous distribution, hybrids based on multiwalled carbon nanotubes (MWCNTs) covalently modified with poly(2-hydroxyethyl methacrylate)-graf t-poly(∈-caprolactone) brushes (MWCNTs-PHEMA-g-PCL) were prepared, and their photo-mechanical actuator behavior, without the need for mixing with an elastomer, was proven. The MWCNTs-PHEMA-g-PCL hybrids were synthesized using the surface-initiated reversible addition- fragmentation chain transfer polymerization of 2-hydroxyethyl methacrylate, with subsequent ring-opening polymerization of ∈- caprolactone from the pendant hydroxyl groups of PHEMA. It was found that the MWCNTs-PHEMA-g-PCL hybrid material containing 24 wt % MWCNTs possesses the properties of thermoplastic elastomers, while retaining their elastic properties at least up to 100 °C. It exhibits an excellent, fully reversible, repeatable, and fast photo-mechanical actuation behavior. © 2020 American Chemical Society. All rights reserved.Slovak Academic Information Agency within the "Action Austria-Slovakia" program; Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2020/003]; Research & Innovation Operational Programme - ERDF [313021T081]; Qatar University [QUCG-CAM 19/20-3]; [VEGA 2/0019/18]; [APVV 18-0420]; [APVV-19-0338]; [SAS-MOST JRP 2019/07]RP/CPS/2020/003; Slovak Academic Information Agency, SAIA; Slovenská Akadémia Vied, SAV: 313021T081; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Qatar University, QU: QUCG-CAM 19/20-3; European Regional Development Fund, FEDE

    Initiators Based on Benzaldoximes: Bimolecular and Covalently Bound Systems

    No full text
    Typical bimolecular photoinitiators (PIs) for radical polymerization of acrylates show only poor photoreactivity because of the undesired effect of back electron transfer. To overcome this limitation, PIs consisting of a benzaldoxime ester and various sensitizers based on aromatic ketones were introduced. The core of the photoinduced reactivity was established by laser flash photolysis, photo-CIDNP, and EPR experiments at short time scales. According to these results, the primarily formed iminyl radicals are not particularly active. The polymerization is predominantly initiated by C-centered radicals. Photo-DSC experiments show reactivities comparable to that of classical monomolecular type I PIs like Darocur 1173

    A structural reconsideration : Linear aliphatic or alicyclic hard segments for biodegradable thermoplastic polyurethanes?

    No full text
    Thermoplastic polyurethane elastomers (TPUs) with a biodegradable chain extender and different nonaromatic diisocyanate hard segments were synthesized and tested concerning their thermal, mechanical, and degradation properties and for their processability regarding electrospinning. The design of the TPUs was based on the structural modification of the hard segment using linear aliphatic hexamethylene diisocyanate (HMDI), more rigid alicyclic 4,4′-methylene bis(cyclohexylisocyanate) (H12MDI), 1,3-bis(isocyanatomethyl)cyclohexane (BIMC), or isophorone diisocyanate (IPDI). The soft segment consisted of poly(tetrahydrofuran). Bis(2-hydroxyethyl) terephthalate (BET) was used as chain extender with cleavable ester bonds. Some of the polyurethanes based on alicyclic diisocyanate showed better mechanical performance than the less rigid HMDI-based TPU. The TPU in vitro degradability was tested for 25 days at elevated temperatures in PBS buffer and indicated a bulk erosion process. Electrospinning experiments were conducted and promising results with respect to further applicability of these materials in vascular tissue engineering were obtained.</p

    Photoinitiators with β-Phenylogous Cleavage: An Evaluation of Reaction Mechanisms and Performance

    No full text
    Bimolecular photoinitiators based on benzophenone and <i>N</i>-phenylglycine ideally overcome limitations of classical two-component systems, such as the possibility of deactivation by a back electron transfer or the solvent cage effect. Furthermore, if they are covalently linked, loss of reactivity by diffusion limitation could be reduced. Here we show that such an initiator displays unusually high photoreactivity. This is established by photo-DSC experiments and mechanistic investigations based on laser flash photolysis, TR-EPR, and photo-CIDNP. The β-phenylogous scission of the C–N bond is highly efficient and leads to the production of reactive initiating radicals at a short time scale

    {(1R,2R,4R)-4-Methyl-1,2-cyclohexanediamine}oxalatoplatinum(II): A Novel Enantiomerically Pure Oxaliplatin Derivative Showing Improved Anticancer Activity in Vivo

    No full text
    Novel derivatives of the clinically established anticancer drug oxaliplatin were synthesized. Cytotoxicity of the compounds was studied in six human cancer cell lines by means of the MTT assay. Additionally, most promising complexes were also investigated in cisplatin- and oxaliplatin-resistant human cancer cell models. The therapeutic efficacy in vivo was studied in the murine L1210 leukemia model. Most remarkably, {(1R,2R,4R)-4-methyl-1,2-cyclohexanediamine}oxalatoplatinum(II), comprising an equatorial methyl substituent at position 4 of the cyclohexane ring, was as potent as oxaliplatin in vitro but distinctly more effective in the L1210 model in vivo at the optimal dose. The advantage observed in the in vivo situation was mainly based on a more favorable therapeutic index. The maximum tolerated dose of the novel analogue was higher than that of oxaliplatin and caused a greater increase in life span (>200% versus 152%), with more animals experiencing long-term survival (5/6 versus 2/6). These data support further (pre)clinical development of the methyl-substituted oxaliplatin analogue with improved anticancer activity
    corecore