39 research outputs found

    Common variants in CLDN2 and MORC4 genes confer disease susceptibility in patients with chronic pancreatitis

    Get PDF
    A recent Genome-wide Association Study (GWAS) identified association with variants in X-linked CLDN2 and MORC4 and PRSS1-PRSS2 loci with Chronic Pancreatitis (CP) in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525—OR 1.71, P = 1.38 x 10-09; rs12008279—OR 1.56, P = 1.53 x 10-04) and 2 variants in MORC4 gene (rs12688220—OR 1.72, P = 9.20 x 10-09; rs6622126—OR 1.75, P = 4.04x10-05) in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06) and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31–0.78], P = 0.0027). A variant in the gene MORC4 (rs12688220) showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068) suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14). Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients

    Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study

    Get PDF
    Background Outbreaks of unexplained illness frequently remain under-investigated. In India, outbreaks of an acute neurological illness with high mortality among children occur annually in Muzaffarpur, the country’s largest litchi cultivation region. In 2014, we aimed to investigate the cause and risk factors for this illness. Methods In this hospital-based surveillance and nested age-matched case-control study, we did laboratory investigations to assess potential infectious and non-infectious causes of this acute neurological illness. Cases were children aged 15 years or younger who were admitted to two hospitals in Muzaffarpur with new-onset seizures or altered sensorium. Age-matched controls were residents of Muzaffarpur who were admitted to the same two hospitals for a non-neurologic illness within seven days of the date of admission of the case. Clinical specimens (blood, cerebrospinal fluid, and urine) and environmental specimens (litchis) were tested for evidence of infectious pathogens, pesticides, toxic metals, and other non-infectious causes, including presence of hypoglycin A or methylenecyclopropylglycine (MCPG), naturally-occurring fruit-based toxins that cause hypoglycaemia and metabolic derangement. Matched and unmatched (controlling for age) bivariate analyses were done and risk factors for illness were expressed as matched odds ratios and odds ratios (unmatched analyses). Findings Between May 26, and July 17, 2014, 390 patients meeting the case definition were admitted to the two referral hospitals in Muzaffarpur, of whom 122 (31%) died. On admission, 204 (62%) of 327 had blood glucose concentration of 70 mg/dL or less. 104 cases were compared with 104 age-matched hospital controls. Litchi consumption (matched odds ratio [mOR] 9·6 [95% CI 3·6 – 24]) and absence of an evening meal (2·2 [1·2–4·3]) in the 24 h preceding illness onset were associated with illness. The absence of an evening meal significantly modified the effect of eating litchis on illness (odds ratio [OR] 7·8 [95% CI 3·3–18·8], without evening meal; OR 3·6 [1·1–11·1] with an evening meal). Tests for infectious agents and pesticides were negative. Metabolites of hypoglycin A, MCPG, or both were detected in 48 [66%] of 73 urine specimens from case-patients and none from 15 controls; 72 (90%) of 80 case-patient specimens had abnormal plasma acylcarnitine profiles, consistent with severe disruption of fatty acid metabolism. In 36 litchi arils tested from Muzaffarpur, hypoglycin A concentrations ranged from 12·4 μg/g to 152·0 μg/g and MCPG ranged from 44·9 μg/g to 220·0 μg/g. Interpretation Our investigation suggests an outbreak of acute encephalopathy in Muzaffarpur associated with both hypoglycin A and MCPG toxicity. To prevent illness and reduce mortality in the region, we recommended minimising litchi consumption, ensuring receipt of an evening meal and implementing rapid glucose correction for suspected illness. A comprehensive investigative approach in Muzaffarpur led to timely public health recommendations, underscoring the importance of using systematic methods in other unexplained illness outbreaks

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Vibrational analysis of peptides, polypeptides, and proteins. XXIV. Conformation of poly(Α-aminoisobutyric acid)

    Full text link
    Raman and polarized ir spectra have been obtained on built-up monomolecular films of poly(Α-aminoisobutyric acid), and analyzed in the context of normal mode calculations on 3 10 -, Α-, and Α′-helix conformations of this molecule. The average discrepancy between observed and calculated frequencies is significantly smaller for the 3 10 -helix than for the other structures. This, together with the more satisfactory explanation of several special features of the spectra, indicates that this polypeptide adopts a 3 10 -helix conformation in such thin films.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37847/1/360231016_ftp.pd

    Biomass-Mediated Synthesis of Cu-Doped TiO2 Nanoparticles for Improved-Performance Lithium-Ion Batteries

    No full text
    Pure TiO2 and Cu-doped TiO2 nanoparticles are synthesized by the biomediated green approach using the Bengal gram bean extract. The extract containing biomolecules acts as capping agent, which helps to control the size of nanoparticles and inhibit the agglomeration of particles. Copper is doped in TiO2 to enhance the electronic conductivity of TiO2 and its electrochemical performance. The Cu-doped TiO2 nanoparticle-based anode shows high specific capacitance, good cycling stability, and rate capability performance for its envisaged application in lithium-ion battery. Among pure TiO2, 3% Cu-doped TiO2, and 7% Cu-doped TiO2 anode, the latter shows the highest capacity of 250 mAh g–1 (97.6% capacity retention) after 100 cycles and more than 99% of coulombic efficiency at 0.5 A g–1 current density. The improved electrochemical performance in the 7% Cu-doped TiO2 is attributed to the synergetic effect between copper and titania. The results reveal that Cu-doped TiO2 nanoparticles might be contributing to the enhanced electronic conductivity, providing an efficient pathway for fast electron transfer

    Covalent functionalized self-assembled lipo-polymerosome bearing Amphotericin B for better management of leishmaniasis and its toxicity evaluation

    No full text
    Amphotericin B remains the preferred choice for leishmanial infection, but it has limited clinical applications due to substantial dose limiting toxicities. In the present work, AmB has been formulated in lipo-polymerosome (L-Psome) by spontaneous self-assembly of synthesized glycol chitosan-stearic acid copolymer. The optimized L-Psome formulation with vesicle size of 243.5 ± 17.9 nm, PDI of 0.168 ± 0.08 and zeta potential of (+) 27.15 ± 0.46 mV with 25.59 ± 0.87% AmB loading was obtained. The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images suggest nearly spherical morphology of L-Psome. An in vitro study showed comparatively sustained AmB release (66.082 ± 1.73% within 24 h) and high plasma stability compared to commercial Ambisome and Fungizone, where glycol chitosan content was found to be efficient in preventing L-Psome destabilization in the presence of plasma protein. In vitro and in vivo toxicity studies revealed less toxicity of AmB-L-Psome compared to commercialized Fungizone and Ambisome favored by monomeric form of AmB within L-Psome, observed by UV–visible spectroscopy. Experimental results of in vitro (macrophage amastigote system) and in vivo (Leishmania donovani infected hamsters) illustrated the efficacy of AmB-L-Psome to augment effective antileishmanial properties supported by upregulation of Th-1 cytokines (TNF-α, IL-12 and IFN-γ) and inducible nitric oxide synthase, and downregulation of Th-2 cytokines (TGF-β, IL-10 and IL-4), measured by quantitative mRNA analysis by real time PCR (RT-PCR). Conclusively, developed L-Psome system could be a viable alternative to the current less stable, toxic commercial formulations and developed as a highly efficacious drug delivery system

    Not Available

    No full text
    Not AvailableThis article presents a methodology for the valuation of agroforestry with respect to fuelwood supply for cooking and its opportunity cost. The share of fuelwood consumption declined gradually from 78 to 67% and 30 to 14% for cooking in rural and urban India, during 1993–94 to 2011–12, respectively. However, the total consumption of fuelwood increased significantly from 106 to 130 million tonnes (Mt) in the corresponding period due to population growth. Fuelwood and chips are in the process of substitution with Liquefied Petroleum Gas (LPG) gradually and many LPG-adopter households continued to use fuelwood as well. The results verified that the maximum quantity of fuelwood for cooking was obtained from agroforestry systems (64%), followed by forests (24%), and from common property resources (12%) during 2011–12. The annual total calorific energy generated from agroforestry through fuelwood, was estimated at 1297.4 PJ, valued at US4053million.Around103Mtofdrydungcakeneedstobeburnttogeneratethesameamountofenergy.Itisestimatedthatbyreplacingdungcakebyfuelwoodderivedfromagroforestrysystems,couldsaveUS 4053 million. Around 103 Mt of dry dung cake needs to be burnt to generate the same amount of energy. It is estimated that by replacing dung cake by fuelwood derived from agroforestry systems, could save US 1116.6 million annually, sparing the dung cake for use as farmyard manure. In another scenario, if entire energy derived from fuelwood obtained from the agroforestry system is to be replaced by LPG, it would require over 196.4 million additional domestic LPG connections that would incur an expenditure of about US$ 36,487.5 million at the country level for the year 2011–12.Not Availabl

    Yield response to applied nutrients and estimates of N-2 fixation in 33-year-old soybean-wheat experiment on a vertisol

    No full text
    Soybean-wheat systems are the major grain production systems on vertisols in Madhya Pradesh, India. A study on yield response to nutrients (N, P, K, S and Zn) and estimation of N fixation by soybean under different nutrient combinations was studied in a 33-year-old, long-term experiment on soybean- wheat-maize system. For estimation of N fixation, annual input-output N balance technique was used. The experiment was initiated in June 1972, comprising eight treatments, viz. control (no fertiliser and no manure), 100% N, 100% NP, 100% NPK, 150% NPK, 100% NPK + 15 t farmyard manure (FYM), 100% NPK + Zn and 100% NPK - S with four replications arranged in a randomised block design. The amount of N applied (100%) to each crop of soybean, wheat and maize was 20, 120 and 80 kg ha , P (100%) 35, 35 and 26 kg ha and K (100%) 16, 32 and 16 kg ha , respectively. FYM was applied one week before the onset of monsoons. Both soybean and wheat yields responded to applied N and P during all these years. The yield response to K was observed after 10 years. The estimated amount of N fixed by soybean annually varied from 62.8 to 161.1 kg ha ; however, the net gain of N in soil after offsetting the N derived by soybean from soil varied from 24.2 to 66.5 kg ha annually.Maximum N gain was recorded on application of P. There was a linear relationship between the amount of harvestable biomass N and residual biomass N, whereas quantity of N added to soil has a curvilinear relationship with the harvestable biomass N. The highest percentage of N derived from the atmosphere (%Ndfa) was recorded in the control treatment, but the highest amount of N fixed was found in the 100% NPK treatment. Balanced use of nutrient is the best option to harness the N fixation potential of soybean

    Self assembled ionically sodium alginate cross-linked amphotericin B encapsulated glycol chitosan stearate nanoparticles: applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis

    No full text
    Objectives: To investigate the applicability, localization, biodistribution and toxicity of self assembled ionically sodium alginate cross-linked AmB loaded glycol chitosan stearate nanoparticles for effective management of visceral leishmaniasis. Methods: Here, we fabricated Amphotericin B (AmB) encapsulated sodium alginate-glycol chitosan stearate nanoparticles (AmB-SA-GCS-NP) using strong electrostatic interaction between oppositely charged polymer and copolymer by ionotropic complexation method. The tagged FAmB-SA-GCS-NP was compared with tagged FAmB for in vitro macrophagic uptake in J774A macrophages and in vivo localization in liver, spleen, lung and kidney tissues. The AmB-SA-GCS-NP and plain AmB were compared for in vitro and in vivo antileishmanial activity, pharmacokinetics, organ distribution and toxicity profiling. Results: The morphology of SA-GCS-NP revealed as nanocrystal (size, 196.3 ± 17.2 nm; PDI, 0.216 ± 0.078; zeta potential, (−) 32.4 ± 5.1 mV) by field emission scanning electron microscopy and high resolution transmission electron microscopy. The macrophage uptake and in vivo tissue localization studies shows tagged FAmB-SA-GCS-NP has significantly higher (~1.7) uptake compared to tagged FAmB. The biodistribution study of AmB-SA-GCS-NP showed more localized distribution towards Leishmania infected organs i.e. spleen and liver while lesser towards kidney. The in vitro (IC<SUB>50</SUB>, 0.128 ± 0.024 μg AmB/ml) and in vivo (parasite inhibition, 70.21 ± 3.46%) results of AmB-SA-GCS-NP illustrated significantly higher (P &#60; 0.05) efficacy over plain AmB. The monomeric form of AmB within SA-GCS-NP, observed by UV-visible spectroscopy, favored very less in vitro and in vivo toxicities compared to plain AmB. Conclusion: The molecular organization, toxicity studies, desired localization and biodistribution of cost effective AmB-SA-GCS-NP was found to be highly effective and can be proved as practical delivery platform for better management of leishmaniasis
    corecore