93 research outputs found

    Genomic Copy Number Alterations in Serous Ovarian Cancer

    Get PDF
    Precision medicine in cancer is the idea that the recognition and targeting of key genetic drivers of a patient’s tumor can permit more effective and less toxic outcomes. Point mutations that alter protein function have been primary targets. Yet in ovarian cancer, unique genetic mutations have been identified only in adult granulosa cell tumors, with a number of other point mutations present in mucinous, clear cell and endometrioid carcinoma subtypes. By contrast, the serous subtype of ovarian cancer shows many fewer point mutations but cascading defects in DNA damage repair that leads to a network of gains and losses of entire genes called somatic copy number alterations. The shuffling and selection of the thousands of genes in serous ovarian cancer has made it a complex disease to understand, but patterns are beginning to emerge based on our understanding of key cellular protein networks that may provide a better basis for future implementation of precision medicine for this most prevalent subtype of disease

    Neuroblastoma Integrins

    Get PDF

    Caspase-8 and Tyrosine Kinases: A Dangerous Liaison in Cancer

    Get PDF
    : Caspase-8 is a cysteine-aspartic acid protease that has been identified as an initiator caspase that plays an essential role in the extrinsic apoptotic pathway. Evasion of apoptosis is a hallmark of cancer and Caspase-8 expression is silenced in some tumors, consistent with its central role in apoptosis. However, in the past years, several studies reported an increased expression of Caspase-8 levels in many tumors and consistently identified novel "non-canonical" non-apoptotic functions of Caspase-8 that overall promote cancer progression and sustain therapy resistance. These reports point to the ability of cancer cells to rewire Caspase-8 function in cancer and raise the question of which are the signaling pathways aberrantly activated in cancer that may contribute to the hijack of Caspase-8 activity. In this regard, tyrosine kinases are among the first oncogenes ever identified and genomic, transcriptomic and proteomic studies indeed show that they represent a class of signaling molecules constitutively activated in most of the tumors. Here, we aim to review and discuss the role of Caspase-8 in cancer and its interplay with Src and other tyrosine kinases

    Selection in spatial stochastic models of cancer: Migration as a key modulator of fitness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We study the selection dynamics in a heterogeneous spatial colony of cells. We use two spatial generalizations of the Moran process, which include cell divisions, death and migration. In the first model, migration is included explicitly as movement to a proximal location. In the second, migration is implicit, through the varied ability of cell types to place their offspring a distance away, in response to another cell's death.</p> <p>Results</p> <p>In both models, we find that migration has a direct positive impact on the ability of a single mutant cell to invade a pre-existing colony. Thus, a decrease in the growth potential can be compensated by an increase in cell migration. We further find that the neutral ridges (the set of all types with the invasion probability equal to that of the host cells) remain invariant under the increase of system size (for large system sizes), thus making the invasion probability a universal characteristic of the cells selection status. We find that repeated instances of large scale cell-death, such as might arise during therapeutic intervention or host response, strongly select for the migratory phenotype.</p> <p>Conclusions</p> <p>These models can help explain the many examples in the biological literature, where genes involved in cell's migratory and invasive machinery are also associated with increased cellular fitness, even though there is no known direct effect of these genes on the cellular reproduction. The models can also help to explain how chemotherapy may provide a selection mechanism for highly invasive phenotypes.</p> <p>Reviewers</p> <p>This article was reviewed by Marek Kimmel and Glenn Webb.</p

    Fabricating Microfluidic Valve Master Molds in SU‐8 Photoresist

    Get PDF
    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution

    JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms.

    Get PDF
    JMJD3 (Jumonji domain containing-3), a histone H3 Lys27 (H3K27) demethylase, has been reported to be involved in the antigen-driven differentiation of germinal center B-cells. However, insight into the mechanism of JMJD3 in DLBCL (Diffuse large B-cell lymphoma) progression remains poorly understood. In this study, we investigated the subtype-specific JMJD3-dependent survival effects in DLBCL. Our data showed that in the ABC subtype, silencing-down of JMJD3 inhibited interferon regulatory factor 4 (IRF4) expression in a demethylase activity-dependent fashion. IRF4 reciprocally stimulated expression of JMJD3, forming a positive feedback loop that promoted survival in these cells. Accordingly, IRF4 expression was sufficient to rescue the pro-apoptotic effect of JMJD3 suppression in the ABC, but not in the GCB subtype. In contrast, ectopic overexpression of BCL-2 completely offset JMJD3-mediated survival in the GCB DLBCL cells. In vivo, treatment with siRNA to JMJD3 reduced tumor volume concordant with increased apoptosis in either subtype. This suggests it is a common target, though the distinctive signaling axes regulating DCBCL survival offer different strategic options for treating DLBCL subtypes

    The CD44 standard/ezrin complex regulates Fas-mediated apoptosis in Jurkat cells

    Get PDF
    The transmembrane receptor CD44 conveys important signals from the extracellular microenvironment to the cytoplasm, a phenomena known as "outside-in” signaling. CD44 exists as several isoforms that result from alternative splicing, which differ only in the extracellular domain but yet exhibit different activities. CD44 is a binding partner for the membrane-cytoskeleton cross-linker protein ezrin. In this study, we demonstrate that only CD44 standard (CD44s) colocalizes and interacts with the actin cross-linkers ezrin and moesin using well-characterized cell lines engineered to express different CD44 isoforms. Importantly, we also show that the association CD44s-ezrin-actin is an important modulator of Fas-mediated apoptosis. The results highlight a mechanism by which signals from the extracellular milieu regulate intracellular signaling activities involved in programmed cell deat

    A strategy to combine pathway-targeted low toxicity drugs in ovarian cancer.

    Get PDF
    Serous Ovarian Cancers (SOC) are frequently resistant to programmed cell death. However, here we describe that these programmed death-resistant cells are nonetheless sensitive to agents that modulate autophagy. Cytotoxicity is not dependent upon apoptosis, necroptosis, or autophagy resolution. A screen of NCBI yielded more than one dozen FDA-approved agents displaying perturbed autophagy in ovarian cancer. The effects were maximized via combinatorial use of the agents that impinged upon distinct points of autophagy regulation. Autophagosome formation correlated with efficacy in vitro and the most cytotoxic two agents gave similar effects to a pentadrug combination that impinged upon five distinct modulators of autophagy. However, in a complex in vivo SOC system, the pentadrug combination outperformed the best two, leaving trace or no disease and with no evidence of systemic toxicity. Targeting the autophagy pathway in a multi-modal fashion might therefore offer a clinical option for treating recalcitrant SOC
    corecore