134 research outputs found

    Generation of high-energy soliton-like pulses in 1.9–2.5 µ m spectral domain

    Get PDF
    Abstract: We experimentally demonstrate the generation of soliton-like pulses with 195–230 fs duration and energy up to 20 nJ in the spectral region of 1.9–2.5 µm directly from the Tm-doped all-fiber MOPA laser. The emerged Raman solitons generated directly in the fiber amplifier exhibit unusual dynamics and spectral properties forming a supercontinuum without conventional gaps between Stokes pulses. Namely, at the output powers above 2 W, in addition to conventional soliton spectral peaks beyond 2.3 μm, we observe high spectral density over an extended range of 1.95–2.23 μm corresponding to a coherent structure that to the best of our knowledge differs from any previously observed supercontinuum regimes. The average optical power of the fiber laser is at the 3-W level, whereas the estimated peak power reached the 80-kW level. Such a relatively simple laser system with high spectral density is a promising light source for various applications ranging from advanced comb spectroscopy to ultra-fast photonics

    All-fiber optical supercontinuum sources in 1.7-3.2 μm range

    Get PDF
    We report supercontinuum generation in the 1.7-2.9 μm range with up to 3.08 W of output power and in the range of 1.93-3.18 μm with up to 3.8 W of output power from all-fiber MOPA pulsed systems with Tm-doped fiber mode-locked seed laser. Supercontinuum generation was demonstrated in nonlinear germanate fibers and fluoride (ZBLAN) fibers. The supercontinuum bandwidth reached 1250 nm at -10 dB level

    Ultra-broadband tunable fiber laser

    Get PDF
    We demonstrate the ultra-broadband gain medium exploiting cascaded Raman amplification. Pumping the 5-km long linear cavity fiber laser at 1349 nm we show the runability of the laser operation from 1400 to 1622 nm

    YDFL operating in 1150-1200-nm spectral domain

    Get PDF
    A family of high-power Yb-doped fiber lasers operated in the range of 1150-1180 nm with output powers of up to 35 W and optical efficiencies up to 60% is realized. Operation at 1200 nm is also demonstrated. Amplified spontaneous emission increase with output power increase is analyzed in frames of the inhomogeneous broadening concept

    Multi-kilowatt peak power nanosecond Er-doped fiber laser

    Get PDF
    We report a two-stage diode-pumped Er-doped fiber amplifier operating at the wavelength of 1550 nm at the repetition rate of 10-100 kHz with an average output power of up to 10 W. The first stage comprising Er-doped fiber was core-pumped at the wavelength of 1480 nm, whereas the second stage comprising double-clad Er/Yb-doped fiber was clad-pumped at the wavelength of 975 nm. The estimated peak power for the 0.4-nm full-width at half-maximum laser emission at the wavelength of 1550 nm exceeded 4-kW level. The initial 100-ns seed diode laser pulse was compressed to 3.5 ns as a result of the 34-dB total amplification. The observed 30-fold efficient pulse compression reveals a promising new nonlinear optical technique for the generation of high power short pulses for applications in eye-safe ranging and micromachining

    Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 μm

    Get PDF
    We report the high-energy flat-top supercontinuum covering the mid-infrared wavelength range of 1.9-2.5 μm as well as electronically tunable femtosecond pulses between 1.98-2.22 μm directly from the thulium-doped fiber laser amplifier. Comparison of experimental results with numerical simulations confirms that both sources employ the same nonlinear optical mechanism - Raman soliton frequency shift occurring inside the Tm-fiber amplifier. To illustrate that, we investigate two versions of the compact diode-pumped SESAM mode-locked femtosecond thulium-doped all-silica-fiber-based laser system providing either broadband supercontinuum or tunable Raman soliton output, depending on the parameters of the system. The first system operates in the Raman soliton regime providing femtosecond pulses tunable between 1.98-2.22 μm. Wide and continuous spectral tunability over 240 nm was realized by changing only the amplifier pump diode current. The second system generates high-energy supercontinuum with the superior spectral flatness of better than 1 dB covering the wavelength range of 1.9-2.5 μm, with the total output energy as high as 0.284 μJ, the average power of 2.1 W at 7.5 MHz repetition rate. We simulate the amplifier operation in the Raman soliton self-frequency shift regime and discuss the role of induced Raman scattering in supercontinuum formation inside the fiber amplifier. We compare this system with a more traditional 1.85-2.53 μm supercontinuum source in the external highly-nonlinear commercial chalcogenide fiber using the Raman soliton MOPA as an excitation source. The reported systems1 can be readily applied to a number of industrial applications in the mid-IR, including sensing, stand-off detection, medical surgery and fine material processing

    Broadband dispersion measurement of ZBLAN, germanate and silica fibers in MidIR

    Get PDF
    We report the first ultra-broad band dispersion measurements in short-length ZBLAN, germanate and silica-based optical fibers in the near- and midIR wavelength ranges between 1.7 and 2.0 μ m and from 2.3 to 2.45 μm, using two ultra-broadband light sources: a broadband superluminescent Tm-doped fiber source and a novel femtosecond pulsed mode-locked Cr:ZnS oscillator. The measured second order dispersion characteristics of the fibers correspond to the theoretical predictions (numerical calculations)

    Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr4+ crystal for Q-switched operation of Yb-fiber laser

    Get PDF
    A waveguide-saturable absorber with low propagation loss is fabricated by femtosecond pulses in YAG:Cr4+ crystal. Q-switch operation of a Yb fiber laser with the new saturable absorber having absorption saturation parameters similar to the bulk YAG:Cr4+ crystal is demonstrated

    Supercontinuum generation in mid-IR using chalcogenide and germanate nonlinear fiber

    Get PDF
    We demonstrate mid-infrared (mid-IR) supercontinuum generation with bandwidth from 2 to 2.8 μm at 20 dB below the peak in nonlinear step-index chalcogenide fiber using femtosecond mid-IR pulses directly from the oscillator. We compare the results with a supercontinuum generated in a silica-based high germanium content fiber. Supercontinuum generation occurs at 90 mW of launched average pump power that is equal to the 0.9 nJ pulse energy. The distinctive feature of the obtained supercontinuum is its stability and coherence due to the deterministic supercontinuum generation by the femtosecond pump pulses

    Generation of high-brightness spectrally flat supercontinuum in 1900-2450 nm range inside a small core thulium-doped fiber amplifier

    Get PDF
    We demonstrate the generation of high-brightness supercontinuum inside thuliumdoped fiber amplifier in 1950-2450nm spectral range with 1.7W output power and 32% slope efficiency, seeded by tunable 2000nm mode-locked laser and assisted by 3H4-3H5/3F4-3H6 thulium transitions
    • …
    corecore