7 research outputs found

    Circulating pre-treatment Epstein-Barr virus DNA as prognostic factor in locally-advanced nasopharyngeal cancer in a nonendemic area

    Get PDF
    The prognostic value of pre-treatment Epstein-Barr Virus (EBV) DNA viral load for non-endemic, locally-advanced, EBV-related nasopharyngeal cancer (NPC) patients is yet to be defined. All patients with EBV encoded RNA (EBER)-positive NPC treated at our Institution from 2005 to 2014 with chemotherapy (CT) concurrent with radiation (RT) +/- induction chemotherapy (ICT) were retrospectively reviewed. Pre-treatment baseline plasma EBV DNA (b-EBV DNA) viral load was detected and quantified by PCR. Median b-EBV DNA value was correlated to potential influencing factors by univariate analysis. Significant variables were then extrapolated and included in a multivariate linear regression model. The same variables, including b-EBV DNA, were correlated with Disease Free Survival (DFS) and Overall Survival (OS) by univariate and multivariate analysis. A total of 130 locally-advanced EBER positive NPC patients were evaluated. Overall, b-EBV DNA was detected in 103 patients (79.2%). Median viral load was 554 copies/mL (range 50-151075), and was positively correlated with T stage (p= 0.002), N3a-b vs N0-1-2 stage (p= 0.048), type of treatment (ICT followed by CTRT, p= 0.006) and locoregional and/or distant disease recurrence (p= 0.034). In the overall population, DFS and OS were significantly longer in patients with pre-treatment negative EBV DNA than in positive subjects at the multivariate analysis. Negative b-EBV DNA can be considered as prognostic biomarker of longer DFS and OS in NPC in non-endemic areas. This finding needs confirmation in larger prospective series, with standardized and inter-laboratory harmonized method of plasma EBV DNA quantificatio

    Cytomegalovirus-specific T cells restricted for shared and donor human leukocyte antigens differentially impact on cytomegalovirus reactivation risk after allogeneic hematopoietic stem cell transplantation

    Get PDF
    After allogeneic hematopoietic stem cell transplantation (HSCT), the emergence of circulating cytomegalovirus (CMV)- specific T cells correlates with protection from CMV reactivation, an important risk factor for non-relapse mortality. However, functional assays measuring CMV-specific cells are time-consuming and often inaccurate at early time-points. We report the results of a prospective single-center, non-interventional study that identified the enumeration of Dextramerpositive CMV-specific lymphocytes as a reliable and early predictor of viral reactivation. We longitudinally monitored 75 consecutive patients for 1 year after allogeneic HSCT (n=630 samples). The presence of ≥0.5 CMV-specific CD8+ cells/mL at day +45 was an independent protective factor from subsequent clinically relevant reactivation in univariate (P<0.01) and multivariate (P<0.05) analyses. Dextramer quantification correlated with functional assays measuring interferon-γ production, and allowed earlier identification of high-risk patients. In mismatched transplants, the comparative analysis of lymphocytes restricted by shared, donor- and host-specific HLA revealed the dominant role of thymic-independent CMV-specific reconstitution. Shared and donor-restricted CMV-specific T cells reconstituted with similar kinetics in recipients of CMV-seropositive donors, while donor-restricted T-cell reconstitution from CMV-seronegative grafts was impaired, indicating that in primary immunological responses the emergence of viral-specific T cells is largely sustained by antigen encounter on host infected cells rather than by cross-priming/presentation by non-infected donor-derived antigen-presenting cells. Multiparametric flow cytometry and high-dimensional analysis showed that shared-restricted CMV-specific lymphocytes display a more differentiated phenotype and increased persistence than donor-restricted counterparts. In this study, monitoring CMV-specific cells by Dextramer assay after allogeneic HSCT shed light on mechanisms of immune reconstitution and enabled risk stratification of patients, which could improve the clinical management of post-transplant CMV reactivations

    IL28B rs12979860 genotype as a predictor marker of progression to BKVirus Associated nephropathy, after kidney transplantation

    No full text
    BK virus (BKV) associated nephropathy (BKVAN) is still an important cause of allograft dysfunction after kidney transplantation (KT). Recent data have shown that the new interferon (IFN)-\uce\ubb family has been ascribed antiviral properties similar to IFN\uce\ub1, and that the response to IFN\uce\ubb in kidney is restricted to epithelial cells, suggesting that the IFN\uce\ubb system evolves as specific protection of the epithelia. We aimed to test the hypothesis of correlation between a single nucleotide polymorphism (C/T dimorphism rs12979860) in the genomic region of IL28B and BKVAN, in patients after KT. Fifty kidney-transplanted patients were included as follow: Group 1 (BKV+/BKVAN+): 11 patients with active BKV-replication and biopsy-proven BKVAN; Group 2 (BKV+/BKVAN-): 22 patients with active BKV-replication but without evidence of BKVAN; Group 3 (BKV-/BKVAN-): 17 patients without evidence of BKV-replication (control group). Here we show that the C/C genotype was statistically higher in group 2 than in group 1 and BKVAN was detected significantly more frequently in patients with C/T and T/T genotypes than in patients with C/C genotype. We therefore propose IL28B polymorphism (rs12979860), as a predictor-marker to differentiate between patients with self-limited, even if persistent, BKV-reactivation and patients with a high risk of progression towards BKVAN, and to modulate the clinical management of these patients accordingly

    Human Herpesvirus 6 Infection Following Haploidentical Transplantation: Immune Recovery and Outcome

    No full text
    Abstract Human herpesvirus 6 (HHV-6) is increasingly recognized as a potentially life-threatening pathogen in allogeneic hematopoietic stem cell transplantation (alloSCT). We retrospectively evaluated 54 adult patients who developed positivity to HHV-6 after alloSCT. The median time from alloSCT to HHV-6 reactivation was 34 days. HHV-6 was present in plasma samples from 31 patients, in bone marrow (BM) of 9 patients, in bronchoalveolar lavage fluid and liver or gut biopsy specimens from 33 patients, and in cerebrospinal fluid of 7 patients. Twenty-nine patients developed acute graft-versus-host disease (GVHD), mainly grade III-IV, and 15 had concomitant cytomegalovirus reactivation. The median absolute CD3 +  lymphocyte count was 207 cells/µL. We reported the following clinical manifestations: fever in 43 patients, skin rash in 22, hepatitis in 19, diarrhea in 24, encephalitis in 10, BM suppression in 18, and delayed engraftment in 11. Antiviral pharmacologic treatment was administered to 37 patients; nonetheless, the mortality rate was relatively high in this population (overall survival [OS] at 1 year, 38% ± 7%). A better OS was significantly associated with a CD3 +  cell count ≥200/µL at the time of HHV-6 reactivation ( P  = .0002). OS was also positively affected by the absence of acute GVHD grade III-IV ( P  = .03) and by complete disease remission ( P  = .03), but was not significantly influenced by steroid administration, time after alloSCT, type of antiviral prophylaxis, plasma viral load, or organ involvement. Although HHV-6 detection typically occurred early after alloSCT, better T cell immune reconstitution seems to have the potential to improve clinical outcomes. Our findings provide new insight into the interplay between HHV-6 and the transplanted immune system
    corecore