21 research outputs found

    Measurements of air pollution emission factors for marine transportation in SECA

    Get PDF
    The chemical composition of the plumes of seagoing ships was investigated during a two weeks long measurement campaign in the port of Rotterdam, Hoek van Holland, The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOX and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was measured. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 34 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factor. The slope of the regression line, 2x1018 (kg fuel)-1, provides the average number of sulphate particles from 1 kg sulphur burnt with the fuel, while the intercept, 0.5x1016 (kg fuel)-1, gives the average number of primary particles (mainly soot and ash) formed during the burning of 1 kg fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that approx. 144 g of sulphate particles were emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was 42 nm.JRC.H.2-Air and Climat

    Pesticide Exposure of Residents Living Close to Agricultural Fields in the Netherlands:Protocol for an Observational Study

    Get PDF
    Background: Application of pesticides in the vicinity of homes has caused concern regarding possible health effects in residents living nearby. However, the high spatiotemporal variation of pesticide levels and lack of knowledge regarding the contribution of exposure routes greatly complicates exposure assessment approaches. Objective: The objective of this paper was to describe the study protocol of a large exposure survey in the Netherlands assessing pesticide exposure of residents living close ( Methods: We performed an observational study involving residents living in the vicinity of agricultural fields and residents living more than 500 m away from any agricultural fields (control subjects). Residential exposures were measured both during a pesticide use period after a specific application and during the nonuse period for 7 and 2 days, respectively. We collected environmental samples (outdoor and indoor air, dust, and garden and field soils) and personal samples (urine and hand wipes). We also collected data on spraying applications as well as on home characteristics, participants' demographics, and food habits via questionnaires and diaries. Environmental samples were analyzed for 46 prioritized pesticides. Urine samples were analyzed for biomarkers of a subset of 5 pesticides. Alongside the field study, and by taking spray events and environmental data into account, we developed a modeling framework to estimate environmental exposure of residents to pesticides. Results: Our study was conducted between 2016 and 2019. We assessed 96 homes and 192 participants, including 7 growers and 28 control subjects. We followed 14 pesticide applications, applying 20 active ingredients. We collected 4416 samples: 1018 air, 445 dust (224 vacuumed floor, 221 doormat), 265 soil (238 garden, 27 fields), 2485 urine, 112 hand wipes, and 91 tank mixtures. Conclusions: To our knowledge, this is the first study on residents' exposure to pesticides addressing all major nondietary exposure sources and routes (air, soil, dust). Our protocol provides insights on used sampling techniques, the wealth of data collected, developed methods, modeling framework, and lessons learned. Resources and data are open for future collaborations on this important topic

    Quantifying nitrogen fluxes and their influence on the greenhouse gas balance: recent findings of the NitroEurope Integrated Project

    Get PDF
    The generation of reactive nitrogen (Nr) by human activities to stimulate agricultural productivity and the unintended formation of Nr in combustion processes both have major impacts on the global environment. Effects of excess Nr include the deterioration of air quality, water quality, soil quality and a decline in biodiversity. One of the most controversial impacts of nitrogen, however, is on the greenhouse gas balance. While recent papers have highlighted a possible benefit of nitrogen in enhancing rates of carbon sequestration, there remain many trade-offs between nitrogen and greenhouse gas exchange. The result is that the net effect of Nr on the global radiative balance has yet to be fully quantified. To better understand these relationships requires intense measurement and modelling of Nr fluxes at various temporal and spatial scales in order to make the link between different nitrogen forms and their fate in the environment. It is essential to measure fluxes for a wide range of ecosystems considering the biosphere-atmosphere exchange of the Nr components and greenhouse gases, as well as the fixation of di-nitrogen and its creation by denitrification. Long-term observations are needed for representative ecosystems, together with results from experiments addressing the responses of the key nitrogen and greenhouse gas fluxes to different global change drivers. The NitroEurope Integrated Project (in short NEU IP), funded under the 6th Framework Programme of the European Commission, has developed and applied a strategy for quantifying these different terms on multiple scales. With the project nearing completion, this presentation reports selected preliminary findings. It highlights the first estimates of Nr inputs and net green-house gas exchange for a series of 13 flux ‘supersites’, complemented by the emerging results of Nr concentrations and related N inputs at a network of 58 ‘inferential sites’, which extend the European representativity of the results. In addition, new low cost methods to measure nitrogen fluxes will be reported, which have been extensively tested at those sites. Results from this 3-tier flux network are underpinned by emerging findings from an extensive network of manipulation sites. A combination of modelling at plot, landscape and European scales is used to upscale the results. Finally the talk will illustrate how nitrogen mitigation techniques are being considered at the European scale, including an estimation of the scale of costs involved in simultaneously mitigating nitrous oxide, ammonia and nitrate losse

    Assessment of residential environmental exposure to pesticides from agricultural fields in the Netherlands

    No full text
    We developed a spatio-temporal model for the Netherlands to estimate environmental exposure to individual agricultural pesticides at the residential address for application in a national case-control study on Parkinson's disease (PD). Data on agricultural land use and pesticide use were combined to estimate environmental exposure to pesticides for the period 1961 onwards. Distance categories of 0-50 m, >50-100 m, >100-500 m and >500-1000 m around residences were considered. For illustration purposes, exposure was estimated for the control population (n=607) in the PD case-control study. In a small validation effort, model estimates were compared with pesticide measurements in air and precipitation collected at 17 stations in 2000-2001. Estimated exposure prevalence was higher for pesticides used on commonly cultivated (rotating) crops than for pesticides used on fruit and bulbs only. Prevalence increased with increasing distance considered. Moderate-to-high correlations were observed between model estimates (>100-500 m and >500-1000 m) and environmental pesticide concentrations measured in 2000-2001. Environmental exposure to individual pesticides can be estimated using relevant spatial and temporal data sets on agricultural land use and pesticide use. Our approach seems to result in accurate estimates of average environmental exposure, although it remains to be investigated to what extent this reflect personal exposure to agricultural pesticides.Journal of Exposure Science and Environmental Epidemiology advance online publication, 22 March 2017; doi:10.1038/jes.2017.3

    Assessment of residential environmental exposure to pesticides from agricultural fields in the Netherlands

    No full text
    We developed a spatio-temporal model for the Netherlands to estimate environmental exposure to individual agricultural pesticides at the residential address for application in a national case-control study on Parkinson's disease (PD). Data on agricultural land use and pesticide use were combined to estimate environmental exposure to pesticides for the period 1961 onwards. Distance categories of 0-50 m, >50-100 m, >100-500 m and >500-1000 m around residences were considered. For illustration purposes, exposure was estimated for the control population (n=607) in the PD case-control study. In a small validation effort, model estimates were compared with pesticide measurements in air and precipitation collected at 17 stations in 2000-2001. Estimated exposure prevalence was higher for pesticides used on commonly cultivated (rotating) crops than for pesticides used on fruit and bulbs only. Prevalence increased with increasing distance considered. Moderate-to-high correlations were observed between model estimates (>100-500 m and >500-1000 m) and environmental pesticide concentrations measured in 2000-2001. Environmental exposure to individual pesticides can be estimated using relevant spatial and temporal data sets on agricultural land use and pesticide use. Our approach seems to result in accurate estimates of average environmental exposure, although it remains to be investigated to what extent this reflect personal exposure to agricultural pesticides.Journal of Exposure Science and Environmental Epidemiology advance online publication, 22 March 2017; doi:10.1038/jes.2017.3

    Pesticides in doormat and floor dust from homes close to treated fields: Spatio-temporal variance and determinants of occurrence and concentrations

    Get PDF
    Indoor dust has been postulated as an important matrix for residential pesticide exposure. However, there is a lack of information on presence, concentrations and determinants of multiple pesticides in dust in residential homes close to treated fields. Our objective was to characterize the spatial and temporal variance of pesticides in house dust, study the use of doormats and floors as proxies for pesticides in indoor dust and identify determinants of occurrence and concentrations. Homes within 250 m from selected bulb fields were invited to participate. Homes within 20 km from these fields but not having agricultural fields within 500 m were selected as controls. House dust was vacuumed in all homes from floors (VFD) and from newly placed clean doormats (DDM). Sampling was done during two periods, when pesticides are used and not-used. For determination of 46 prioritized pesticides, a multi-residue extraction method was used. Most statistical analyses are focused on the 12 and 14 pesticides that were detected in >40% of DDM and VFD samples, respectively. Mixed models were used to evaluate relationships between possible determinants and pesticides occurrence and concentrations in DDM and VFD. 17 pesticides were detected in more than 50% of the homes in both matrixes. Concentrations differed by about a factor five between use and non-use periods among homes within 250 m of fields and between these homes and controls. For 7 pesticides there was a moderate to strong correlation (Spearman rho 0.30-0.75) between concentrations in DDM and VFD. Distance to agricultural fields and air concentrations were among the most relevant predictors for occurrence and levels of a given pesticide in DDM. Concentrations in dust are overall higher during application periods and closer to fields (<250 m) than further away. The omnipresence of pesticides in dust lead to residents being exposed all year round

    Spatio-temporal variation of outdoor and indoor pesticide air concentrations in homes near agricultural fields

    Get PDF
    Background: Previous research has shown that many current-use pesticides can be detected in air around application areas. Environmental exposure to pesticides may cause adverse health effects, necessitating accurate assessment of outdoor and indoor air concentrations for people living close to spraying sites. We evaluated outdoor and indoor air concentrations of different pesticides, as well as factors influencing spatial and temporal variations. Methods: We collected outdoor air samples at 58 homes located within 250 m of bulb fields and 15 control homes located further than 500 m from any agricultural field. Outdoor air sampling following a pesticide spray event was performed 24-h a day for 7 consecutive days. Two full day samples were collected at the same locations during a non-use period. In homes located within 50 m from agricultural fields (N = 18), indoor air was also sampled for the first 24 h after field spraying. Samples were analysed for a total of 46 pesticides and degradation products. From these, 11 were actively used on nearby fields, 3 were used in bulb disinfection and 6 were degradation products. Results: Compared to non-use periods, pesticides concentrations were 5–10 times higher in outdoor air during application periods. Similar concentration differences were observed between exposed homes and controls both during pesticide use and non-use period. For 14 pesticides, there were moderate correlations (spearman > 0.4–0.7) between outdoor and indoor air concentrations. Wind direction, evapotranspiration and agricultural area surrounding a home were the most important determinants of air concentration of the applied pesticides. Conclusions: This study provides strong evidence suggesting that environmental exposure to pesticides via air is not limited to the day of application and may occur year-round. The concentrations appeared higher during the use period. Factors influencing the local fate of pesticides in air may differ significantly between compounds
    corecore