157 research outputs found
An RNAi-based system for loss-of-function analysis identifies Raf1 as a crucial mediator of BCR-ABL - Driven leukemogenesis
Genetic loss-of-function studies in murine tumor models have been essential in the analysis of downstream mediators of oncogenic transformation. Unfortunately, these studies are frequently limited by the availability of genetically modified mouse strains. Here we describe a versatile method allowing the efficient expression of an oncogene and simultaneous knockdown of targets of interest (TOI) from a single retroviral vector. Both oncogene and TOI-specific miR30-based shRNA are under the control of the strong viral long terminal repeat promoter, resulting in a single shared RNA transcript. Using this vector in a murine syngeneic BM transplantation model for BCR-ABL - induced chronic myeloid leukemia, we find that oncogene expression andtargetknockdownin primary hematopoietic cells with this vector is efficient both in vitro and in vivo, and demonstrate that Raf1, but not BRAF, modulates BCR-ABL - dependent ERK activation and transformation of hematopoietic cells. This expression system could facilitate genetic loss-of-function studies and allow the rapid validation of potential drug targets in a broad range of oncogene-driven murine tumor models. © 2011 by The American Society of Hematology
Pharmacological inhibition of c-Abl compromises genetic stability and DNA repair in Bcr-Abl-negative cells
Imatinib inhibits the kinase activity of Bcr-Abl and is currently the most effective drug for treatment of chronic myeloid leukemia (CML). Imatinib also blocks c-Abl, a physiological tyrosine kinase activated by a variety of stress signals including damaged DNA. We investigated the effect of pharmacological inhibition of c-Abl on the processing of irradiation-induced DNA damage in Bcr-Abl-negative cells. Cell lines and peripheral blood mononuclear cells (PBMCs) from healthy volunteers were treated with imatinib or dasatinib before gamma-irradiation. Inhibition of c-Abl caused an enhanced irradiation-induced mutation frequency and slowdown of DNA repair, whereas imatinib was ineffective in cells expressing a T315I variant of c-Abl. Mutation frequency and repair kinetics were also studied in c-Abl-/- murine embryonic fibroblasts (MEFs) retransfected with wild-type c-Abl (wt-Abl) or a kinase-defect variant of Abl (KD-Abl). Enhanced mutation frequency as well as delayed DNA repair was observed in cells expressing KD-Abl. These data indicate that pharmacological inhibition of c-Abl compromises DNA-damage response
Ex vivo propagation in a novel 3D high-throughput co-culture system for multiple myeloma
PURPOSE: Multiple myeloma (MM) remains an incurable hematologic malignancy which ultimately develops drug resistance and evades treatment. Despite substantial therapeutic advances over the past years, the clinical failure rate of preclinically promising anti-MM drugs remains substantial. More realistic in vitro models are thus required to better predict clinical efficacy of a preclinically active compound.
METHODS: Here, we report on the establishment of a conical agarose 3D co-culture platform for the preclinical propagation of primary MM cells ex vivo. Cell growth was compared to yet established 2D and liquid overlay systems. MM cell lines (MMCL: RPMI-8226, U266, OPM-2) and primary patient specimens were tested. Drug sensitivity was examined by exploring the cytotoxic effect of bortezomib and the deubiquitinase inhibitor auranofin under various conditions.
RESULTS: In contrast to 2D and liquid overlay, cell proliferation in the 3D array followed a sigmoidal curve characterized by an initial growth delay but more durable proliferation of MMCL over 12 days of culture. Primary MM specimens did not expand in ex vivo monoculture, but required co-culture support by a human stromal cell line (HS-5, MSP-1). HS-5 induced a \u3e fivefold increase in cluster volume and maintained long-term viability of primary MM cells for up to 21 days. Bortezomib and auranofin induced less cytotoxicity under 3D vs. 2D condition and in co- vs. monoculture, respectively.
CONCLUSIONS: This study introduces a novel model that is capable of long-term propagation and drug testing of primary MM specimens ex vivo overcoming some of the pitfalls of currently available in vitro models
APC/CCdh1-Mediated Degradation of the F-Box Protein NIPA Is Regulated by Its Association with Skp1
NIPA (Nuclear Interaction Partner of Alk kinase) is an F-box like protein
that targets nuclear Cyclin B1 for degradation. Integrity and therefore activity
of the SCFNIPA E3 ligase is regulated by cell-cycle-dependent phosphorylation
of NIPA, restricting substrate ubiquitination to interphase. Here we show
that phosphorylated NIPA is degraded in late mitosis in an APC/CCdh1-dependent
manner. Binding of the unphosphorylated form of NIPA to Skp1 interferes with
binding to the APC/C-adaptor protein Cdh1 and therefore protects unphosphorylated
NIPA from degradation in interphase. Our data thus define a novel mode of
regulating APC/C-mediated ubiquitination
Phase II study of weekly oxaliplatin plus infusional fluorouracil and folinic acid (FUFOX regimen) as first-line treatment in metastatic gastric cancer
Oxaliplatin plus fluorouracil/folinic acid (5-FU/FA) every 2 weeks has shown promising activity in advanced gastric cancer. This study assessed the efficacy and safety of weekly oxaliplatin plus 5-FU/FA (FUFOX regimen) in the metastatic setting. Patients with previously untreated metastatic gastric cancer received oxaliplatin (50 mg m−2) plus FA (500 mg m−2, 2-h infusion) followed by 5-FU (2000 mg m−2, 24-h infusion) given on days 1, 8, 15 and 22 of a 5-week cycle. The primary end point of this multicentre phase II study was the response rate according to RECIST criteria. A total of 48 patients were enrolled. Median age was 62 years and all patients had metastatic disease, with a median number of three involved organs. The most common treatment-related grade 3/4 adverse events were diarrhoea (17%), deep vein thrombosis (15%), neutropenia (8%), nausea (6%), febrile neutropenia (4%), fatigue (4%), anaemia (4%), tumour bleeding (4%), emesis (2%), cardiac ischaemia (2%) and pneumonia (2%). Grade 1/2 sensory neuropathy occurred in 67% of patients but there were no episodes of grade 3 neuropathy. Intent-to-treat analysis showed a response rate of 54% (95% CI, 39–69%), including two complete responses. At a median follow-up of 18.1 months (range 11.2–26.2 months), median survival is 11.4 months (95% CI, 8.0–14.9 months) and the median time to progression is 6.5 months (95% CI, 3.9–9.2 months). The weekly FUFOX regimen is well tolerated and shows notable activity as first-line treatment in metastatic gastric cancer
Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba
The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition
Phosphorylation of BECLIN-1 by BCR-ABL suppresses autophagy in chronic myeloid leukemia
Autophagy is a genetically regulated process of adaptation to metabolic stress and was recently shown to be involved in the treatment response of chronic myeloid leukemia (CML). However, in vivo data are limited and the molecular mechanism of autophagy regulators in the process of leukemogenesis is not completely understood. Here we show that Beclin-1 knockdown, but not Atg5 deletion in a murine CML model leads to a reduced leukemic burden and results in a significantly prolonged median survival of targeted mice. Further analyses of murine cell lines and primary patient material indicate that active BCR-ABL directly interacts with BECLIN-1 and phosphorylates its tyrosine residues 233 and 352, resulting in autophagy suppression. By using phosphorylation-deficient and phosphorylation-mimic mutants, we identify BCR-ABL induced BECLIN-1 phosphorylation as a crucial mechanism for BECLIN-1 complex formation: interaction analyses exhibit diminished binding of the positive autophagy regulators UVRAG, VPS15, ATG14 and VPS34 and enhanced binding of the negative regulator Rubicon to BCR-ABL-phosphorylated BECLIN-1. Taken together, our findings show interaction of BCR-ABL and BECLIN-1 thereby highlighting the importance of BECLIN-1-mediated autophagy in BCR-ABL+ cells
Cks1 Is Required for Tumor Cell Proliferation but Not Sufficient to Induce Hematopoietic Malignancies
The Cks1 component of the SCFSkp2 complex is necessary for p27Kip1 ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27Kip1 levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27Kip1 levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27Kip1. To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo
Proposed global prognostic score for systemic mastocytosis: a retrospective prognostic modelling study
[Background]: Several risk stratification models have been proposed in recent years for systemic mastocytosis but have not been directly compared. Here we designed and validated a risk stratification model for progression-free survival (PFS) and overall survival (OS) in systemic mastocytosis on the basis of all currently available prognostic factors, and compared its predictive capacity for patient outcome with that of other risk scores.[Methods]: We did a retrospective prognostic modelling study based on patients diagnosed with systemic mastocytosis between March 1, 1983, and Oct 11, 2019. In a discovery cohort of 422 patients from centres of the Spanish Network on Mastocytosis (REMA), we evaluated previously identified, independent prognostic features for prognostic effect on PFS and OS by multivariable analysis, and designed a global prognostic score for mastocytosis (GPSM) aimed at predicting PFS (GPSM-PFS) and OS (GPSM-OS) by including only those variables that showed independent prognostic value (p<0·05). The GPSM scores were validated in an independent cohort of 853 patients from centres in Europe and the USA, and compared with pre-existing risk models in the total patient series (n=1275), with use of Harrells' concordance index (C-index) as a readout of the ability of each model to risk-stratify patients according to survival outcomes.[Findings]: Our GPSM-PFS and GPSM-OS models were based on unique combinations of independent prognostic factors for PFS (platelet count ≤100 × 109 cells per L, serum β2-microglobulin ≥2·5 μg/mL, and serum baseline tryptase ≥125 μg/L) and OS (haemoglobin ≤110 g/L, serum alkaline phosphatase ≥140 IU/L, and at least one mutation in SRSF2, ASXL1, RUNX1, or DNMT3A). The models showed clear discrimination between low-risk and high-risk patients in terms of worse PFS and OS prognoses in the discovery and validation cohorts, and further discrimination of intermediate-risk patients. The GPSM-PFS score was an accurate predictor of PFS in systemic mastocytosis (C-index 0·90 [95% CI 0·87–0·93], vs values ranging from 0·85 to 0·88 for pre-existing models), particularly in non-advanced systemic mastocytosis (C-index 0·85 [0·76–0·92], within the range for pre-existing models of 0·80 to 0·93). Additionally, the GPSM-OS score was able to accurately predict OS in the entire cohort (C-index 0·92 [0·89–0·94], vs 0·67 to 0·90 for pre-existing models), and showed some capacity to predict OS in advanced systemic mastocytosis (C-index 0·72 [0·66–0·78], vs 0·64 to 0·73 for pre-existing models).[Interpretation]: All evaluated risk classifications predicted survival outcomes in systemic mastocytosis. The REMA-PFS and GPSM-PFS models for PFS, and the International Prognostic Scoring System for advanced systemic mastocytosis and GPSM-OS model for OS emerged as the most accurate models, indicating that robust prognostication might be prospectively achieved on the basis of biomarkers that are accessible in diagnostic laboratories worldwide.Carlos III Health Institute, European Regional Development Fund, Spanish Association of Mastocytosis and Related Diseases, Rare Diseases Strategy of the Spanish National Health System, Junta of Castile and León, Charles and Ann Johnson Foundation, Stanford Cancer Institute Innovation Fund, Austrian Science Fund
- …