1,015 research outputs found

    Pedestrian demand modelling of large cities: an applied example from London

    Get PDF
    This paper introduces a methodology for the development of city wide pedestrian demand models and shows its application to London. The approach used for modelling is Multiple Regression Analysis of independent variables against the dependent variable of observed pedestrian flows. The test samples were from manual observation studies of average total pedestrian flow per hour on 237 sample sites. The model will provide predicted flow values for all 7,526 street segments in the 25 square kilometres of Central London. It has been independently validated by Transport for London and is being tested against further observation data. The longer term aim is to extend the model to the entire greater London area and to incorporate additional policy levers for use as a transport planning and evaluation tool

    A periodic elastic medium in which periodicity is relevant

    Get PDF
    We analyze, in both (1+1)- and (2+1)- dimensions, a periodic elastic medium in which the periodicity is such that at long distances the behavior is always in the random-substrate universality class. This contrasts with the models with an additive periodic potential in which, according to the field theoretic analysis of Bouchaud and Georges and more recently of Emig and Nattermann, the random manifold class dominates at long distances in (1+1)- and (2+1)-dimensions. The models we use are random-bond Ising interfaces in hypercubic lattices. The exchange constants are random in a slab of size Ld−1×λL^{d-1} \times \lambda and these coupling constants are periodically repeated along either {10} or {11} (in (1+1)-dimensions) and {100} or {111} (in (2+1)-dimensions). Exact ground-state calculations confirm scaling arguments which predict that the surface roughness ww behaves as: w∌L2/3,Lâ‰ȘLcw \sim L^{2/3}, L \ll L_c and w∌L1/2,L≫Lcw \sim L^{1/2}, L \gg L_c, with Lc∌λ3/2L_c \sim \lambda^{3/2} in (1+1)(1+1)-dimensions and; w∌L0.42,Lâ‰ȘLcw \sim L^{0.42}, L \ll L_c and w∌ln⁥(L),L≫Lcw \sim \ln(L), L \gg L_c, with Lc∌λ2.38L_c \sim \lambda^{2.38} in (2+1)(2+1)-dimensions.Comment: Submitted to Phys. Rev.

    Intermittence and roughening of periodic elastic media

    Get PDF
    We analyze intermittence and roughening of an elastic interface or domain wall pinned in a periodic potential, in the presence of random-bond disorder in (1+1) and (2+1) dimensions. Though the ensemble average behavior is smooth, the typical behavior of a large sample is intermittent, and does not self-average to a smooth behavior. Instead, large fluctuations occur in the mean location of the interface and the onset of interface roughening is via an extensive fluctuation which leads to a jump in the roughness of order λ\lambda, the period of the potential. Analytical arguments based on extreme statistics are given for the number of the minima of the periodicity visited by the interface and for the roughening cross-over, which is confirmed by extensive exact ground state calculations.Comment: Accepted for publication in Phys. Rev.

    Outdoor recreation : a case study of the Upper Berg River basin

    Get PDF
    In this thesis I have developed a general concept of outdoor recreation in river basins, and where possible, have applied this study to the Upper Berg River Basin. The formulation of a physical plan for the development of the outdoor recreation areas, is beyond the· scope of this thesis. The comprehensive, local statistical. data to be collected, analysed and synthesized for this purpose would take a team of planners, months, if not years; to complete

    Structural compliance, misfit strain and stripe nanostructures in cuprate superconductors

    Full text link
    Structural compliance is the ability of a crystal structure to accommodate variations in local atomic bond-lengths without incurring large strain energies. We show that the structural compliance of cuprates is relatively small, so that short, highly doped, Cu-O-Cu bonds in stripes are subject to a tensile misfit strain. We develop a model to describe the effect of misfit strain on charge ordering in the copper oxygen planes of oxide materials and illustrate some of the low energy stripe nanostructures that can result.Comment: 4 pages 5 figure

    The true reinforced random walk with bias

    Full text link
    We consider a self-attracting random walk in dimension d=1, in presence of a field of strength s, which biases the walker toward a target site. We focus on the dynamic case (true reinforced random walk), where memory effects are implemented at each time step, differently from the static case, where memory effects are accounted for globally. We analyze in details the asymptotic long-time behavior of the walker through the main statistical quantities (e.g. distinct sites visited, end-to-end distance) and we discuss a possible mapping between such dynamic self-attracting model and the trapping problem for a simple random walk, in analogy with the static model. Moreover, we find that, for any s>0, the random walk behavior switches to ballistic and that field effects always prevail on memory effects without any singularity, already in d=1; this is in contrast with the behavior observed in the static model.Comment: to appear on New J. Phy

    Extremal statistics in the energetics of domain walls

    Get PDF
    We study at T=0 the minimum energy of a domain wall and its gap to the first excited state concentrating on two-dimensional random-bond Ising magnets. The average gap scales as ΔE1∌LΞf(Nz)\Delta E_1 \sim L^\theta f(N_z), where f(y)∌[ln⁥y]−1/2f(y) \sim [\ln y]^{-1/2}, Ξ\theta is the energy fluctuation exponent, LL length scale, and NzN_z the number of energy valleys. The logarithmic scaling is due to extremal statistics, which is illustrated by mapping the problem into the Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of domain walls has also a logarithmic dependence on system size.Comment: Accepted for publication in Phys. Rev.

    Quasi-static cracks and minimal energy surfaces

    Get PDF
    We compare the roughness of minimal energy(ME) surfaces and scalar ``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces have the same roughness scaling, w sim L^zeta (L is system size) with zeta = 2/3. The 3-d ME and SQF results at strong disorder are consistent with the random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough'' transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure

    Random manifolds in non-linear resistor networks: Applications to varistors and superconductors

    Full text link
    We show that current localization in polycrystalline varistors occurs on paths which are, usually, in the universality class of the directed polymer in a random medium. We also show that in ceramic superconductors, voltage localizes on a surface which maps to an Ising domain wall. The emergence of these manifolds is explained and their structure is illustrated using direct solution of non-linear resistor networks
    • 

    corecore