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We study atT50 the minimum energy of a domain wall and its gap to the first excited state, concentrating
on two-dimensional random-bond Ising magnets. The average gap scales asDE1;Lu f (Nz), where f (y)
;@ ln y#21/2, u is the energy fluctuation exponent,L is the length scale, andNz is the number of energy valleys.
The logarithmic scaling is due to extremal statistics, which is illustrated by mapping the problem into the
Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of domain walls also has a logarith-
mic dependence on the system size.
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The energy landscapes of random systems are often as-
sumed to be described at low temperatures by scaling expo-
nents that follow from the behavior of the ground states. In
renormalization group~RG! language this means that tem-
perature is an irrelevant variable. In most quenched random
systems, the energy landscape contains many low-lying
metastable minima separated by high barriers. Examples can
be found in the realm of random magnets, the most famous
one being spin glasses@1#. The dynamical behavior at finite
temperatures, as a result of a temperature change or the ap-
plication of an external field, will naturally depend on the
associated barriers and energy differences between the
minima.

It is often assumed that energy differences or barriers be-
tween configurations (dE) relate to the lengthl involved by
a scaling relationdE; l u, whereu is an energy fluctuation
exponent. It measures the dependence of the first nonanalytic
correction to the ground state or free energy on the length
scale. Here we show that, for extended manifolds, or Ising
magnet domain walls~DW’s! @equivalent to directed poly-
mers~DP’s! in 111 dimensions#, the energy difference be-
tween the ground state energy and the next state~the ‘‘first
excited state’’! follows from extremal statistics. This is due
to the fact that, usually, one can assume that the energy land-
scape, at large enough scales, consists of manyindependent
valleys. Finding the gap between the minimum state and the
second-most favorable state is then a straightforward ex-
tremal statistics problem, as is the simpler one of the mini-
mum of all the independent valley energies. The extreme
statistics leads to logarithmic factors in the gap and mini-
mum energies, which we also show by numerical calcula-
tions. The same result can also be applied to other disordered
systems, where the energy landscape of DW’s can be re-
duced to a one-dimensional form. We also interpret the re-
sults in the language of kinetic roughening, since DP’s map
into the Kardar-Parisi-Zhang~KPZ! equation of growth
@2–4#. Finally, as an application we show that the extremal
statistics scaling shows up in thesusceptibilityof DW’s.

Here we consider elastic manifolds atT50 with
quenched short-range, e.g., pointlike defects, randomness,
and in d5(D1n),n51 dimensions, in whichD is the di-

mension of the manifolds andd is the dimension of their
embedding space. The continuum Hamiltonian for such an
elastic manifold is

H5E FG2 $¹z~x!%21Vr~x,z!GdDx, ~1!

where z(x) is the height of the interface andx is the
D-dimensional internal coordinate of the manifold. The first
term in the integrand is the elastic contribution, with the
corresponding surface stiffnessG of the interface, and the
second term comes from the random potential. For random
manifolds we use quenched random bond~RB! disorder,
which means that the random potential is delta point corre-
lated, i.e., ^Vr(x,z)Vr(x8,z8)&52Dd(x2x8)d(z2z). The
geometric behavior of the manifold is characterized byw2

5^@z(x)2z(x)#2&;L2z, where L is the linear size of the
system andz is the corresponding roughness exponent. At
low temperatures in 111 dimensions, due to the equivalence
of DP’s in random media@2,3# to the KPZ equation, the
exact roughness exponent readsz52/3 @2–4#. In higher di-
mensions the functional RG approach gives the approximate
expressionz.0.208(42D) @5# for RB DW’s. Since the
width of a manifold grows asLz, it is expected that the
number of independent valleys@6,7# is proportional toNz
;Lz /Lz. At T50 the total average minimum energy^E0& of
an elastic manifold is equal to its free energy and grows
linearly with the manifold areaLD, and its fluctuations scale
asDE5^(E02^E0&)

2&1/2;Lu, whereu52z1D22 @8#.
Let us now analytically derive the scaling of the ‘‘extreme

statistics’’ contributions to the lowest minimumE0, and the
gap between two lowest minima,DE15E12E0. We con-
sider the case of many independent valleys in the landscape
Nz.1, which means that the DP’s can have an arbitrary
starting or end point, and thatLz.Lz. For the ‘‘single val-
ley’’ boundary condition case~one end of the manifold
fixed!, it is known numerically that near its mean the distri-
bution is Gaussian@9#. Hence we draw the energiesE from
the distribution

P~E!5k expH 2S uE2^E&u
DE D hJ , ~2!
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where^E&;LD is the average energy of the manifold,DE
;Lu measures its fluctuations, andk normalizes the integral
so k;1/Lu. The exponenth is not constant@9,3#. Near the
peak, h52. In the low energy tail numerical simulations
indicate thath2'1.6, while in the high energy tail the best
estimate ish1'2.4 @9#. At this stage we allowh to be
variable, but note that it is the behavior near the mean and
the low energy tailwhich is the most important in this cal-
culation. In a system withNz;Lz /Lz independent local
minima, the probability that the global minimum has energy
E is given by

LNz
~E!5NzP~E!$12C1~E!%Nz21, ~3!

whereC1(E)5*2`
E P(e)de @10#. The gapDE1 follows simi-

larly. Its distribution,GNz
(DE1 ,E) is given by

GNz
~DE1 ,E!5Nz~Nz21!P~E!P~E1DE1!

3$12C1~E1DE1!%Nz22. ~4!

GNz
(DE1 ,E) is the probability that if the lowest energy

manifold has an energyE, then the gap to the next lowest
energy level isDE1. The average value of the global mini-
mum is given by

^E0&5E
2`

`

ELNz
~E!dE, ~5!

which is not analytically integrable. The typical value of the
lowest energy may be estimated using anextreme scaling
estimate. It follows from the fact the term inside the$ % in
Eq. ~3! becomes unity ifC1 is small enough. This has proven
useful in other contexts, for example breakdown of random
networks, and here reads@11#

1/kNzP~^E0&!'1 ~6!

which yields

^E0&'^E&2DE$ ln~Nz!%
1/h, ~7!

whereDE;Lu.
To estimate the typical value of the gap, we use, similarly

to Eq. ~6!,

1/k2Nz~Nz21!P~^E0&!P~^E0&1^DE1&!'1, ~8!

which, with Eq.~7!, and the fact thatu^DE1&u!u^E0&u, yields

^DE1&'
DEh

h~^E&2^E0&!h21
'

DE

h$ ln~Nz!%
(h21)/h

. ~9!

We thus find that, in addition to the usual sample to sample
variations in the energy (DE;Lu), there is a slow reduction
in the gap which scales as$ ln(Nz)%

2(h21)/h, providedNz.1.
Our case is closely related to theweakly brokenreplica sym-
metry @12# of DP’s; also see Ref.@13#, where the relation
between replica methods and extremal statistics is discussed.

The (111)-dimensional DW maps, in the continuum
limit, to the KPZ equation by associating the minimum en-
ergy of a DW with the minimumarrival time t1[E0 of a
KPZ surface to heighth. The connection is illustrated in Fig.
1 in the limit of many valleysNz.1. The minimal path of a
DW with an end pointz(L) is equal to the path by which the
interface reachesh5L at a locationx15z and at a timet1
5E0. Thust1 attains a logarithmic correction, from Eq.~7!,
of size 2hb$ ln(Lz/h1/z)%1/h, where b51/3 andz53/2 are
now the roughening exponent and dynamical exponent of the
KPZ universality class@2#. Now consider the second smallest
arrival time t2. In the KPZ language of DP’s, if the path
x2(t8) that givest2 is completely independent of thex1(t8)
that results int1, then t2 and x2 are related to a separate,
independent valley of the DP landscape. ThedifferenceDt
5t22t1 is then equal toDE1 of the DW, and likewise obeys
extremal statistics, so thatDt;hb@ ln(Lz/h1/z)#2(h21)/h. For
growing surfaces this limit is theearly stagesof growth, in
which the correlation lengthj!Lz , and therefore the arrival
times, or DW energies, are independent.

In order to check the scaling behavior of the gap energy
@Eq. ~9!#, we have done extensive exact ground state calcu-
lations of elastic manifolds in the two dimensional spin-half
RB Ising model, i.e., we take a nearest neighbor Ising model
with random but ferromagnetic couplingsJi j .0. Calcula-
tions are performed by varying both the parallel lengthL and
the heightLz of systems oriented in the$10% direction. The
DW is imposed by antiperiodic boundary conditions in thez
direction atz50 andLz . The elastic manifold is the inter-
face, which divides the system into two parts, one containing
up-spins and the other containing down-spins. AtT50 the
problem of finding the ground state DW is a global optimi-
zation problem, which is solved exactly using a mapping to
the minimum-cut maximum-flow problem. The so-called
push-and-relabel method solves this problem efficiently, and
was extensively discussed elsewhere@14–16#.

In order to control the average number of the minima
^Nz&;Lz /Lz in a chosen system size, we set the initial po-
sition of the interfacez̄0 in a fixed size window at height
z̄0 /Lz.const. If the ground state interface is originally out-
side the window, with room only for a single valley, it is
neglected, and a new configuration is created. After the origi-
nal ground state is found, with its energyE0, the lattice is

FIG. 1. The relation between DP’s and growing interfaces. The
KPZ interface is growing, so thath increases and DP’s in indepen-
dent valleys equal thenth fastest arrival times of the interface to a
prefixed heighth, at xn , at timest(xn) in a system with widthLz .
The solid line describes the fastest polymer, which ends atx1. The
dashed lines describe the next fastest polymers.
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reduced, so that bonds in and above the window are ne-
glected and the new ground state, itsE1, and the correspond-
ing gap energyDE1 are found. We studied at leastN5500
realizations of system sizes up toL5300 andLz5500. Fig-
ure 2 starts the discussion of the numerical data by showing
how the ground state energy^E0& behaves as a function ofL
andLz . The scaling result@Eq. ~7!# shows that the correction
to the energy follows a logarithmic dependence onNz ,
which is confirmed in the figure. Note that the extraction of
this correction from the data requires an educated guess of
how ^E&, the single valley energy, behaves withL. We have
used an ansatẑE&;aL1b, with the values ofa andb dem-
onstrated in Fig. 2, so that the exponent valueh52 corre-
sponds to a Gaussian distribution. Due to the nature of the
procedure, it would probably be possible to obtain a reason-
able fit for, e.g.,h5h2 as well.

For small sample sizes,Lz,Lz the value of the energyE0
is affected by confinement. Similarly, the gap is controlled
by confinement effects in this limit. WhenLz is large there
are many independent valleys and extreme statistics effects
are important; hence we expect

^DE1~L,Lz!&;H f̃ ~Lz!, Lz!L,

Lu/@ ln~Lz /Lz!# (h21)/h, Lz@L
~10!

where we have used Eq.~9! andNz;Lz /Lz. We attempt to
collapse the data by using the reduced variables
^DE1(L,Lz)&/L

u versusLz /Lz for variousL andLz . As seen
in Fig. 3 we find a nice agreement with the extreme scaling
form, with the ratio (h21)/h51/2, i.e., by using a Gaussian
distribution.

Next we consider the relation of the extremal statistics to
the susceptibility of these manifolds. In theD-dimensional
case the susceptibility is defined by

x5 lim
h→01

K ]m

]h L , ~11!

where the change in the magnetization of the wholed dimen-
sional system is calculated in the limit of the vanishing ex-
ternal field from the positive side@16,17#, and the brackets
imply a disorder average. We recently showed that the gen-
eral behavior follows from a level-crossing phenomenon,
which involves an extra potentialVh(z)5hz, dependent on
the height of the interface, in Hamiltonian~1!, and thath is
an applied external field to the manifold. In any particular
configuration whenh is varied, the manifold position
changes in macroscopic ‘‘jumps’’@16#, the first one occur-
ring at h1.

One may write the susceptibility@Eq. ~11!# with the help
of the probability distribution of the fieldsh1P(h1), in the
form

x5 lim
h→01

K Dz

DhL .K Dz1

Lz
L lim

h→01

P~h1!, ~12!

because the magnetization of a systemm(h);z(h)/Lz , and
since the distance in the jump between the minima^Dz1&
;Lz @16#, independently of the sample-dependenth1. It is
expected that a scaling formP(h1).^h1&P̄(h1 /^h1&) ap-
plies, and thatP remains finite in the limith1→0. Next we
compare the average susceptibility as a function of the num-
ber of valleysNz to the conjecture that, in the presence of the
field, the average gap for the original and excited state fol-
lows an extremal statistics form similar to Eq.~9!.

The simulations are done again using a fixed height win-
dow in which the original ground state without a field is
found. After this the external fieldh is slowly applied by
increasing the coupling constant valuesJ'(z)5Jrandom
1hz, whereJ' is perpendicular to thez direction, until the
first jump is observed with the correspondingh1 andDz1. In
order to find the scaling relation for the first jump fieldh1,
we perform the ansatẑDE1&5^h1&LLz , since the field con-
tributes to a polymer energy proportional toLD(D51), and

FIG. 2. The scaling of the ground state energyE0 as a function
of scaled transverse system sizeLz /Lz for the system sizesL5100,
200, and 300. The line20.4110.53@ ln(2.78Lz /Lz)#1/2 is a guide to
the eye. We have subtracted the expected dependence of^E& from
^E0& ~see the text!. In Figs. 2–4 we use RB disorder, with aJi j ,z

P@021# uniform distribution andJi j ,x50.5. The number of real-
izations ranges fromN5500 for L5300 andLz5500 toN52000
for L5200 andLz5600.

FIG. 3. The scaling functionf (y) of the scaled disorder average
of the energy differencêDE1&/L

u as a function of scaled trans-
verse system sizeLz /Lz for the system sizesL5100, 200, and 300,

each withz̄0 /Lz.const. u51/3 andz52/3. The line has a shape
f (y)50.23 ln(y)21/2. The configurations are the same as in Fig. 2.
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Lz;^Dz1& is the difference in the field contributionshz to
the energy at finiteh at different average valley heightsz0
andz1. Hence

^h1~L,Lz!&LLz;Lu f S Lz

LzD , ~13!

where the scaling functionf (y)5@ ln(Lz/Lz)#(h21)/h. Figure 4
shows the scaling function@Eq. ~13!# with a collapse
of ^h1(L,Lz)&L

12uLz versusLz /Lz for various L and Lz
which is again in good agreement with the logarithmic
extreme scaling correction. Generalizing to arbitrary dimen-
sions, one has the behavior of ^h1(L,Lz)&
;Lu2DLz

21@ ln(Lz/Lz)#2(h21)/h. For the susceptibility@Eq.
~12!#, one obtains, usinĝh1& for the normalization factor at
P(h150),

x;LD2uLz@ ln~Lz /Lz!# (h21)/h, ~14!

and in the isotropic limitL}Lz , the total susceptibilityx tot
5Ldx becomes~whenh52)

x tot;L2D112u@~12z!ln~L !#1/2. ~15!

Note that for most random manifolds 12z.0, with the ex-
ception of 2D random field Ising DW’s for whichz.1 at
large scales@18#; thus the susceptibility does not diverge@19#
as the premiseNz.1 does not hold in this case. If the con-
dition Nz.1 is violated, the extreme statistics correction dis-
appears. Thus the extremal statistics of energy landscapes
leads to a logarithmic multiplier in the susceptibility@Eq.
~15!# of the DW’s. This result differs from algebraic forms of
scaling@16#; also see Ref.@20#.

To conclude, we have considered the average energy dif-
ferences or ‘‘gaps’’ in the energy landscape of~two-
dimensional! elastic manifolds. An extremal statistics argu-
ment in a system geometry with many independent valleys
shows that the ground state energy and the gap have loga-
rithmic scaling functions, also reproduced with numerical
studies. An illuminating connection can be made to Kardar-
Parisi-Zhang nonequilibrium surface growth. Finally, we
demonstrate that the gap scaling shows up in the susceptibil-
ity of random manifolds. This might have implications for
flux line lattices in high-temperature superconductors, where
a similar problem related to barriers was analyzed with the
aid of extremal statistics@21#.
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FIG. 4. The scaling functionf (y) of the scaled disorder-average
of the jump field ^h1&L

12uLz as a function of scaled transverse
system sizeLz /Lz for the system sizesL5100, 150, 200, 250, and

300, each withz̄0 /Lz.const. u51/3 andz52/3. The line has a
shapef (y)50.41 ln(y)21/2. Here the number of realizations ranges
from N5500 for L5300 andLz5500 toN52600 forL5200 and
Lz5600.
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