249 research outputs found

    The efficacy of periodic +Gz exposure in the prevention of bedrest induced orthostatic intolerance

    Get PDF
    What is the most efficient dosage of periodic exposure to positive 1G(z) during microgravity to maintain a functional upright position after returning to a positive 1G(z) environment? The answer has implications for the type of countermeasures astronauts will be required to perform during long term space flight. Methods: Nine males were subjected to four different positive 1G exposure protocols plus a control protocol ('zero G(z)') during four days of continuous bedrest. The four positive 1G(z) exposures consisted of periodic standing or walking, each for a total period of two or four hours. Each subject was returned for bedrest on five different occasions over a period of approximately one year to obtain data on each of the nine subjects across all four positive 1G(z) treatments and the control. A 30 min tilt test was used to measure orthostatic response during pre and post bedrest. Results: In terms of survival rate (percentage of subjects who did not faint after 30 sec of tilt), four hours of intermittent standing was the only protocol that maintained a rate comparable to pre bedrest levels (87.5 percent). Although the other three positive 1G(z) protocols performed better than the 'zero G(z) control (22.2 percent), only the four hour standing returned post bedrest survival rates to pre bedrest levels. Conclusions: The results will need to be evaluated with regards to a variety of other physiological systems which are known to decondition during microgravitry

    Moral Hazard in the Oil Patch: The Effect of the Banking Crisis on RTC Hotel Appraisals in the American Southwest

    Get PDF
    This paper compares appraised hotel values of Resolution Trust Corporation (RTC) properties in the American Southwest ( Oil Patch states) with their respective market values. The RTC was given the task of having hotel properties appraised and subsequently auctioned for sale. However, RTC officials were aware they had limited time and funding for their operations. Consequently, RTC officials faced a significant amount of political pressure to sell non-performing assets quickly, particularly in the Oil Patch where banking problems were especially severe. Given these circumstances, the RTC may have been motivated to influence appraised hotel values downward to sell more assets faster. The results of this paper indicate appraised hotel values to be lower than their market values in the region. Moreover, the differences between appraised values and market values were significantly more negative in the Oil Patch than in other regions

    Fractional Distillation of Bio-Oil Produced by Pyrolysis of Açaí (Euterpe oleracea) Seeds

    Get PDF
    In this work, the seeds of açaí (Euterpe oleracea, Mart), a rich lignin-cellulose residue, has been submitted to pyrolysis to produce a bio-oil-like fossil fuels. The pyrolysis carried out in a reactor of 143 L, 450°C, and 1.0 atm. The morphology of Açaí seeds in nature and after pyrolysis is characterized by SEM, EDX, and XRD. The experiments show that bio-oil, gas, and coke yields were 4.38, 30.56, and 35.67% (wt.), respectively. The bio-oil characterized by AOCS, ASTM, and ABNT/NBR methods for density, kinematic viscosity, and acid value. The bio-oil density, viscosity, and acid value were 1.0468 g/cm3, 68.34 mm2/s, and 70.26 KOH/g, respectively. The chemical composition and chemical functions of bio-oil are determined by GC-MS and FT-IR. The GC-MS identified in bio-oil 21.52% (wt.) hydrocarbons and 78.48% (wt.) oxygenates (4.06% esters, 8.52% carboxylic acids, 3.53% ketones, 35.16% phenols, 20.52% cresols, 5.75% furans, and 0.91% (wt.) aldehydes), making it possible to apply fractional distillation to obtain fossil fuel-like fractions rich in hydrocarbons. The distillation of bio-oil is carried out in a laboratory-scale column, according to the boiling temperature of fossil fuels. The distillation of bio-oil yielded fossil fuel-like fractions (gasoline, kerosene, and light diesel) of 4.70, 28.21, and 22.35% (wt.), respectively

    Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD

    Genetic Dissection of Strain Dependent Paraquat-induced Neurodegeneration in the Substantia Nigra Pars Compacta

    Get PDF
    The etiology of the vast majority of Parkinson's disease (PD) cases is unknown. It is generally accepted that there is an interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat (PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic (DA) neurons in the ventral midbrain's substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ∼50% of their SNpc DA neurons, whereas inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14 centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the mechanism of action of these two parkinsonian neurotoxins are different

    Meat Intake and the Dose of Vitamin B3 - Nicotinamide:Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?

    Get PDF
    Meat and vitamin B 3 – nicotinamide – intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by ‘welcoming’ gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B 3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive ‘meat transitions’. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic ‘old friends’ compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B 3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress

    Improving the efficiency and effectiveness of an industrial SARS-CoV-2 diagnostic facility.

    Get PDF
    On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories
    corecore