5,461 research outputs found

    Applications of system identification methods to the prediction of helicopter stability, control and handling characteristics

    Get PDF
    A set of results on rotorcraft system identification is described. Flight measurements collected on an experimental Puma helicopter are reviewed and some notable characteristics highlighted. Following a brief review of previous work in rotorcraft system identification, the results of state estimation and model structure estimation processes applied to the Puma data are presented. The results, which were obtained using NASA developed software, are compared with theoretical predictions of roll, yaw and pitching moment derivatives for a 6 degree of freedom model structure. Anomalies are reported. The theoretical methods used are described. A framework for reduced order modelling is outlined

    Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system

    Get PDF
    The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures

    Deformed Schrodinger symmetry on noncommutative space

    Full text link
    We construct the deformed generators of Schroedinger symmetry consistent with noncommutative space. The examples of the free particle and the harmonic oscillator, both of which admit Schroedinger symmetry, are discussed in detail. We construct a generalised Galilean algebra where the second central extension exists in all dimensions. This algebra also follows from the Inonu--Wigner contraction of a generalised Poincare algebra in noncommuting space.Comment: 9 pages, LaTeX, abstract modified, new section include

    On Maximal Unbordered Factors

    Get PDF
    Given a string SS of length nn, its maximal unbordered factor is the longest factor which does not have a border. In this work we investigate the relationship between nn and the length of the maximal unbordered factor of SS. We prove that for the alphabet of size σ5\sigma \ge 5 the expected length of the maximal unbordered factor of a string of length~nn is at least 0.99n0.99 n (for sufficiently large values of nn). As an application of this result, we propose a new algorithm for computing the maximal unbordered factor of a string.Comment: Accepted to the 26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015

    Equivariant quantization of orbifolds

    Get PDF
    Equivariant quantization is a new theory that highlights the role of symmetries in the relationship between classical and quantum dynamical systems. These symmetries are also one of the reasons for the recent interest in quantization of singular spaces, orbifolds, stratified spaces... In this work, we prove existence of an equivariant quantization for orbifolds. Our construction combines an appropriate desingularization of any Riemannian orbifold by a foliated smooth manifold, with the foliated equivariant quantization that we built in \cite{PoRaWo}. Further, we suggest definitions of the common geometric objects on orbifolds, which capture the nature of these spaces and guarantee, together with the properties of the mentioned foliated resolution, the needed correspondences between singular objects of the orbifold and the respective foliated objects of its desingularization.Comment: 13 page

    Exotic galilean symmetry and the Hall effect

    Get PDF
    The ``Laughlin'' picture of the Fractional Quantum Hall effect can be derived using the ``exotic'' model based on the two-fold centrally-extended planar Galilei group. When coupled to a planar magnetic field of critical strength determined by the extension parameters, the system becomes singular, and ``Faddeev-Jackiw'' reduction yields the ``Chern-Simons'' mechanics of Dunne, Jackiw, and Trugenberger. The reduced system moves according to the Hall law.Comment: Talk given by P. A. Horvathy at the Joint APCTP- Nankai Symposium. Tianjin (China), Oct.2001. To appear in the Proceedings, to be published by Int. Journ. Mod. Phys. B. 7 pages, LaTex, IJMPB format. no figure
    corecore