223 research outputs found

    Body movement activity recognition for ambulatory cardiac monitoring

    Get PDF
    Wearable electrocardiogram (W-ECG) recorders are increasingly in use by people suffering from cardiac abnormalities who also choose to lead an active lifestyle. The challenge presently is that the ECG signal is influenced by motion artifacts induced by body movement activity (BMA) of the wearer. The usual practice is to develop effective filtering algorithms which will eliminate artifacts. Instead, our goal is to detect the motion artifacts and classify the type of BMA from the ECG signal itself. We have recorded the ECG signals during specified BMAs, e.g., sitting still, walking, movements of arms and climbing stairs, etc. with a single-lead system. The collected ECG signal during BMA is presumed to be an additive mix of signals due to cardiac activities, motion artifacts and sensor noise. A particular class of BMA is characterized by applying eigen decomposition on the corresponding ECG data. The classification accuracies range from 70% to 98% for various class combinations of BMAs depending on their uniqueness based on this technique. The above classification is also useful for analysis of P and T waves in the presence of BMA

    PMDM3: PROJECTING ECONOMIC RESULTS OF A EUROPEAN TRIAL TO THE UNITED STATES: ISSUES AND METHODS

    Get PDF

    Transition detection in body movement activities for wearable ECG

    Get PDF
    It has been shown by Pawar (2007) that the motion artifacts induced by body movement activity (BMA) in a single-lead wearable electrocardiogram (ECG) signal recorder, while monitoring an ambulatory patient, can be detected and removed by using a principal component analysis (PCA)-based classification technique. However, this requires the ECG signal to be temporally segmented so that each segment comprises of artifacts due to a single type of body movement activity. In this paper, we propose a simple, recursively updated PCA-based technique to detect transitions wherever the type of body movement is changed

    Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO

    Get PDF
    Creep motion of magnetic domain wall (DW), thermally activated DW dynamics under subthreshold driving forces, is a paradigm to understand the interaction between driven interfaces and applied external forces. Previous investigation has shown that DW in a metallic system interacts differently with current and magnetic field, manifesting itself as different universality classes for the creep motion. In this article, we first review the experimental determination of the universality classes for current- and field-driven DW creeps in a Ta/CoFeB/MgO wire, and then elucidate the underlying factors governing the obtained results. We show that the nature of torque arising from current in association with DW configuration determines universality class for the current-induced creep in this system. We also discuss the correlation between the field-induced DW creep characteristics and structure observed by a transmission electron microscope. The observed results are expected to provide a deeper understanding for physics of DW motion in various magnetic materials

    Dephasing by a Continuous-Time Random Walk Process

    Full text link
    Stochastic treatments of magnetic resonance spectroscopy and optical spectroscopy require evaluations of functions like , where t is time, Q(s) is the value of a stochastic process at time s, and the angular brackets denote ensemble averaging. This paper gives an exact evaluation of these functions for the case where Q is a continuous-time random walk process. The continuous time random walk describes an environment that undergoes slow, step-like changes in time. It also has a well-defined Gaussian limit, and so allows for non-Gaussian and Gaussian stochastic dynamics to be studied within a single framework. We apply the results to extract qubit-lattice interaction parameters from dephasing data of P-doped Si semiconductors (data collected elsewhere), and to calculate the two-dimensional spectrum of a three level harmonic oscillator undergoing random frequency modulations.Comment: 25 pages, 4 figure

    Fulminant hepatitis in a tropical population: clinical course, cause, and early predictors of outcome

    Get PDF
    The profiles of patients with fulminant hepatic failure (FHF) from developing countries have not been reported earlier. The current study was conducted prospectively, at a single tertiary care center in India, to document the demographic and clinical characteristics, natural course, and causative profile of patients with FHF as well as to define simple prognostic markers in these patients. Four hundred twenty-three consecutive patients with FHF admitted from January 1987 to June 1993 were included in the study. Each patient's serum was tested for various hepatotropic viruses. Univariate Cox's regression for 28 variables, multivariate Cox's proportional hazard regression, stepwise logistic regression, and Kaplan-Meier survival analysis were done to identify independent predictors of outcome at admission. All patients presented with encephalopathy within 4 weeks of onset of symptoms. Hepatotropic viruses were the likely cause in most of these patients. Hepatitis A (HAV), hepatitis B (HBV), hepatitis D (HDV) viruses, and antitubercular drugs could be implicated as the cause of FHF in 1.7% (n = 7), 28% (n = 117), 3.8% (n = 16), and 4.5% (n = 19) patients, respectively. In the remaining 62% (n = 264) of patients the serological evidence of HAV, HBV, or HDV infection was lacking, and none of them had ingested hepatotoxins. FHF was presumed to be caused by non-A, non-B virus(es) infection. Sera of 50 patients from the latter group were tested for hepatitis E virus (HEV) RNA and HCV RNA. In 31 (62%), HEV could be implicated as the causative agent, and isolated HCV RNA could be detected in 7 (19%). Two hundred eighty eight (66%) patients died. Approximately 75% of those who died did so within 72 hours of hospitalisation. One quarter of the female patients with FHF were pregnant. Mortality among pregnant females, nonpregnant females, and male patients with FHF was similar (P > .1). Univariate analysis showed that age, size of the liver assessed by percussion, grade of coma, presence of clinical features of cerebral edema, presence of infection, serum bilirubin, and prothrombin time prolongation over controls at admission were related to survival (P < .01). The rapidity of onset of encephalopathy and cause of FHF did not influence the outcome. Cox's proportional hazard regression showed age ≥ 40 years, presence of cerebral edema, serum bilirubin ≥ 15 mg/dL, and prothrombin time prolongation of 25 seconds or more over controls were independent predictors of outcome. Ninety-three percent of the patients with three or more of the above prognostic markers died. The sensitivity, specificity, positive predictive value, and the negative predictive value of the presence of three or more of these prognostic factors for mortality was 93%, 80%, 86%, and 89.5%, respectively, with a diagnostic accuracy of 87.3%. We conclude that most of our patients with FHF might have been caused by hepatotropic viral infection, and non-A, non-B virus(es) seems to be the dominant hepatotropic viral infection among these patients. They presented with encephalopathy within 4 weeks of the onset of symptoms. Pregnancy, cause, and rapidity of onset of encephalopathy did not influence survival. The prognostic model developed in the current study is simple and can be performed at admission

    Impact of Covid-19 Lockdown on Availability of Drinking Water in the Arsenic-Affected Ganges River Basin

    Get PDF
    The 2020 COVID-19 pandemic has not only resulted in immense loss of human life, but it also rampaged across the global economy and socio-cultural structure. Worldwide, countries imposed stringent mass quarantine and lockdowns to curb the transmission of the pathogen. While the efficacy of such lockdown is debatable, several reports suggest that the reduced human activities provided an inadvertent benefit by briefly improving air and water quality. India observed a 68-days long, nation-wide, stringent lockdown between 24 March and 31 May 2020. Here, we delineate the impact of the lockdown on groundwater and river sourced drinking water sustainability in the arsenic polluted Ganges river basin of India, which is regarded as one of the largest and most polluted river basins in the world. Using groundwater arsenic measurements from drinking water wells and water quality data from river monitoring stations, we have studied ~700 km stretches of the middle and lower reaches of the As (arsenic)-polluted parts of the river for pre-lockdown (January–March 2020), syn-lockdown (April–May), and post-lockdown periods (June–July). We provide the extent of As pollution-free groundwater vis-à-vis river water and examine alleviation from lockdown as an opportunity for sustainable drinking water sources. The overall decrease of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations and increase of pH suggests a general improvement in Ganges water quality during the lockdown in contrast to pre-and-post lockdown periods, potentially caused by reduced effluent. We also demonstrate that land use (agricultural/industrial) and land cover (urban-periurban/rural) in the vicinity of the river reaches seems to have a strong influence on river pollutants. The observations provide a cautious optimistic scenario for potentially developing sustainable drinking water sources in the arsenic-affected Ganges river basin in the future by using these observations as the basis of proper scientifically prudent, spatially adaptive strategies, and technological interventions

    Transcriptional landscape of the human and fly genomes: Nonlinear and multifunctional modular model of transcriptomes

    Get PDF
    Regions of the genome not coding for proteins or not involved in cis-acting regulatory activities are frequently viewed as lacking in functional value. However, a number of recent large-scale studies have revealed significant regulated transcription of unannotated portions of a variety of plant and animal genomes, allowing a new appreciation of the widespread transcription of large portions of the genome. High-resolution mapping of the sites of transcription of the human and fly genomes has provided an alternative picture of the extent and organization of transcription and has offered insights for biological functions of some of the newly identified unannotated transcripts. Considerable portions of the unannotated transcription observed are developmental or cell-type-specific parts of protein-coding transcripts, often serving as novel, alternative 5′ transcriptional start sites. These distal 5′ portions are often situated at significant distances from the annotated gene and alternatively join with or ignore portions of other intervening genes to comprise novel unannotated protein-coding transcripts. These data support an interlaced model of the genome in which many regions serve multifunctional purposes and are highly modular in their utilization. This model illustrates the underappreciated organizational complexity of the genome and one of the functional roles of transcription from unannotated portions of the genome. Copyright 2006, Cold Spring Harbor Laboratory Press © 2006 Cold Spring Harbor Laboratory Press
    • …
    corecore