243 research outputs found

    Immunological imbalance between IFN-³ and IL-10 levels in the sera of patients with the cardiac form of Chagas disease

    Get PDF
    The immune response is crucial for protection against disease; however, immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. Several studies have evaluated the cellular and humoral immune responses in chagasic patients in an attempt to correlate immunological findings with clinical forms of Chagas disease. Moreover, immunoglobulins and cytokines are important for parasitic control and are involved in lesion genesis. Here, cytokine and IgG isotype production were studied, using total epimastigote antigen on sera of chagasic patients with indeterminate (IND, n = 27) and cardiac (CARD, n = 16) forms of the disease. Samples from normal, uninfected individuals (NI, n = 30) were use as controls. The results showed that sera from both IND and CARD patients contained higher levels of Trypanosoma cruzi-specific IgG1 (IgG1) antibodies than sera from NI. No difference in IgG2 production levels was observed between NI, IND and CARD patients, nor was a difference in IL-10 and IFN-³ production detected in the sera of IND, CARD and NI patients. However, IND patients displayed a positive correlation between IL-10 and IFN-³ levels in serum, while CARD patients showed no such correlation, indicating an uncontrolled inflammatory response in CARD patients. These findings support the hypothesis that a lack of efficient regulation between IFN-³ and IL-10 productions in CARD patients may lead to cardiac immunopathology.CNP

    Co-ordinated Gene Expression in the Liver and Spleen during Schistosoma japonicum Infection Regulates Cell Migration

    Get PDF
    Determining the molecular events induced in the spleen during schistosome infection is an essential step in better understanding the immunopathogenesis of schistosomiasis and the mechanisms by which schistosomes modulate the host immune response. The present study defines the transcriptional and cellular events occurring in the murine spleen during the progression of Schistosoma japonicum infection. Additionally, we compared and contrasted these results with those we have previously reported for the liver. Microarray analysis combined with flow cytometry and histochemistry demonstrated that transcriptional changes occurring in the spleen were closely related to changes in cellular composition. Additionally, the presence of alternatively activated macrophages, as indicated by up-regulation of Chi3l3 and Chi3l4 and expansion of F4/80+ macrophages, together with enhanced expression of the immunoregulatory genes ANXA1 and CAMP suggests the spleen may be an important site for the control of S. japonicum-induced immune responses. The most striking difference between the transcriptional profiles of the infected liver and spleen was the contrasting expression of chemokines and cell adhesion molecules. Lymphocyte chemokines, including the homeostatic chemokines CXCL13, CCL19 and CCL21, were significantly down-regulated in the spleen but up-regulated in the liver. Eosinophil (CCL11, CCL24), neutrophil (CXCL1) and monocyte (CXCL14, CCL12) chemokines and the cell adhesion molecules VCAM1, NCAM1, PECAM1 were up-regulated in the liver but unchanged in the spleen. Chemokines up-regulated in both organs were expressed at significantly higher levels in the liver. Co-ordinated expression of these genes probably contributes to the development of a chemotactic signalling gradient that promotes recruitment of effector cells to the liver, thereby facilitating the development of hepatic granulomas and fibrosis. Together these data provide, for the first time, a comprehensive overview of the molecular events occurring in the spleen during schistosomiasis and will substantially further our understanding of the local and systemic mechanisms driving the immunopathogenesis of this disease

    Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Get PDF
    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections

    The Cumulative Effects of Polymorphisms in the DNA Mismatch Repair Genes and Tobacco Smoking in Oesophageal Cancer Risk

    Get PDF
    The DNA mismatch repair (MMR) enzymes repair errors in DNA that occur during normal DNA metabolism or are induced by certain cancer-contributing exposures. We assessed the association between 10 single-nucleotide polymorphisms (SNPs) in 5 MMR genes and oesophageal cancer risk in South Africans. Prior to genotyping, SNPs were selected from the HapMap database, based on their significantly different genotypic distributions between European ancestry populations and four HapMap populations of African origin. In the Mixed Ancestry group, the MSH3 rs26279 G/G versus A/A or A/G genotype was positively associated with cancer (OR = 2.71; 95% CI: 1.34–5.50). Similar associations were observed for PMS1 rs5742938 (GG versus AA or AG: OR = 1.73; 95% CI: 1.07–2.79) and MLH3 rs28756991 (AA or GA versus GG: OR = 2.07; 95% IC: 1.04–4.12). In Black individuals, however, no association between MMR polymorhisms and cancer risk was observed in individual SNP analysis. The interactions between MMR genes were evaluated using the model-based multifactor-dimensionality reduction approach, which showed a significant genetic interaction between SNPs in MSH2, MSH3 and PMS1 genes in Black and Mixed Ancestry subjects, respectively. The data also implies that pathogenesis of common polymorphisms in MMR genes is influenced by exposure to tobacco smoke. In conclusion, our findings suggest that common polymorphisms in MMR genes and/or their combined effects might be involved in the aetiology of oesophageal cancer

    “El Sexo no es Malo”: Maternal Values Accompanying Contraceptive Use Advice to Young Latina Adolescent Daughters

    Get PDF
    In this study, we utilized observational methods to identify maternal values and concerns accompanying contraceptive use advice in Latina mother–daughter sexuality conversations. The sample included non-sexually active early adolescents around 12 years of age and their mostly Spanish-speaking Latina mothers. Videotaped conversations were coded for the prevalence of messages related to four sexual values (abstinence, delay sex until older, sex is “normal”, sex is “improper”) and concerns about pregnancy and STD transmission. We examined whether the duration of time spent conversing about these messages was associated with participant characteristics, general communication openness, and the amount of time the dyads spent discussing contraceptive use. Results indicated that Latina mothers who had fewer years of education and lower family income talked longer to their daughters about the need to delay sex, avoid risky situations that would increase their chances of getting pregnant or acquiring an STD, and engage in self-protective practices. Less perceived openness in general communication as reported by both the mothers and the daughters was associated with increased time discussing that sex is improper. Although the duration of contraceptive use messages was brief, mothers and daughters who discussed the fact that sex is normal, and who communicated more about the importance of delaying sex, talked longer about contraceptive use practices compared to mothers and daughters who engaged in minimal discussion of these sexual values

    The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome

    Get PDF
    Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3′ flanks of genes than in their 5′ flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered
    corecore