3,024 research outputs found

    Evaluating hyperspectral imagery for mapping the surface symptoms of dryland salinity

    Get PDF
    Airborne hyperspectral imagery has the potential to overcome the spectral and spatial resolution limitations of multispectral satellite imagery for monitoring salinity at both regional and farm scales. In particular, saline areas that have good cover of salt tolerant plants are difficult to map with multispectral satellite imagery. Hyperspectral imagery may provide a more reliable salinity mapping method because of its potential to discriminate halophytic plant cover from non - halophytes. HyMap and CASI airborne imagery ( at 3m ground resolution ) and Hyperion satellite imagery ( at 30 resolution ) were acquired over a 140 sq km dryland agricultural area in South Australia, which exhibits severe symptoms of salinity, including extensive patches of the perennial halophytic shrub samphire ( Halosarcia pergranulata ), sea barley grass ( Hordeum marinum ) and salt encrusted pans. The HyMap and Hyperion imagery were acquired in the dry season ( March and February respectively ) to maximise soil and perennial vegetation mapping. The optimum time of year to map sea barley grass, an annual species, was investigated through spectral discrimination analysis. Multiple reflectance spectra were collected of sea barley grass and other annual grasses with an ASD Fieldspec Pro spectrometer during the September spring flush and in November during late senescence. Comparing spectra of different species in November attempted to capture the spectral differences between the late senescing sea barley grass and other annual grasses. Broad NIR and SWIR regions were identified where sea barley grass differs significantly from other species in November during late senescence. The sea barley grass was therefore shown to have the potential to be discriminated and mapped with hyperspectral imagery at this time and as a result the CASI survey was commission for November. Other salinity symptoms were characterised by collecting single field and laboratory spectra for comparison to image derived spectra in order to provide certainty about the landscape components that were to be mapped. Endmembers spectra associated with saltpans and samphire patches were extracted from the imagery using automated endmember generation procedures or selected regions of interest and used in subsequent partial unmixing. Spectral subsets were evaluated for their ability to optimise salinity maps. The saltpan spectra contained absorption features consistent with montmorillonite and gypsum. A single gypsum endmember from one image strip successfully mapped saltpans across multiple images strips using the 1750 nm absorption feature as the input to matched filter unmixing. The individual spectra of green and red samphire are dominated by photosynthetic vegetation characteristics. The spectra of green samphire, often seen with red tips, exhibit peaks in both green and red wavebands whereas the red samphire spectra only contain a significant reflectance peak in the visible red wavelength region. For samphire, Mixture Tuned Matched Filtering using image spectra, containing all wavelength regions, from known samphire patches produced the most satisfactory mapping. Output salinity maps were validated at over 100 random sites. The HyMap salinity maps produced the most accurate results compared to CASI and Hyperion. HyMap successfully mapped highly saline areas with a good cover of samphire vegetation at Point Sturt without the use of multitemporal imagery or ancillary data such as topography or PIRSA soil attribute maps. CASI and Hyperion successfully mapped saltpan, however, their samphire maps showed a poor agreement with field data. These results suggest that perennial vegetation mapping requires all three visible, NIR and SWIR wavelength regions because the SWIR region contains important spectral properties related to halophytic adaptations. Furthermore, the unconvincing results of the CASI sea barley grass maps suggests that the optimal sensor for mapping both soil and vegetation salinity symptoms are airborne sensors with high spatial and spectral resolution, that incorporate the 450 to 1450 nm wavelength range, such as HyMap. This study has demonstrated that readily available software and image analysis techniques are capable of mapping indicators of varying levels of salinity. With the ability to map symptoms across multiple image strips, airborne hyperspectral imagery has the potential for mapping larger areas covering sizeable dryland agriculture catchments, closer in extent to single satellite images. This study has illustrated the advantage of the hyperspectral imagery over traditional soil mapping based on aerial photography interpretation such as the NLWRA Salinity 2000 and the PIRSA soil landscape unit maps. The HyMap salinity maps not only improved mapping of saline areas covered with samphire but also provided salinity maps that varied spatially within saline polygons.Thesis (Ph.D.)--School of Earth and Environmental Sciences, 2006

    Methods of evaluating the effects of coding on SAR data

    Get PDF
    It is recognized that mean square error (MSE) is not a sufficient criterion for determining the acceptability of an image reconstructed from data that has been compressed and decompressed using an encoding algorithm. In the case of Synthetic Aperture Radar (SAR) data, it is also deemed to be insufficient to display the reconstructed image (and perhaps error image) alongside the original and make a (subjective) judgment as to the quality of the reconstructed data. In this paper we suggest a number of additional evaluation criteria which we feel should be included as evaluation metrics in SAR data encoding experiments. These criteria have been specifically chosen to provide a means of ensuring that the important information in the SAR data is preserved. The paper also presents the results of an investigation into the effects of coding on SAR data fidelity when the coding is applied in (1) the signal data domain, and (2) the image domain. An analysis of the results highlights the shortcomings of the MSE criterion, and shows which of the suggested additional criterion have been found to be most important

    2D Proactive Uplink Resource Allocation Algorithm for Event Based MTC Applications

    Full text link
    We propose a two dimension (2D) proactive uplink resource allocation (2D-PURA) algorithm that aims to reduce the delay/latency in event-based machine-type communications (MTC) applications. Specifically, when an event of interest occurs at a device, it tends to spread to the neighboring devices. Consequently, when a device has data to send to the base station (BS), its neighbors later are highly likely to transmit. Thus, we propose to cluster devices in the neighborhood around the event, also referred to as the disturbance region, into rings based on the distance from the original event. To reduce the uplink latency, we then proactively allocate resources for these rings. To evaluate the proposed algorithm, we analytically derive the mean uplink delay, the proportion of resource conservation due to successful allocations, and the proportion of uplink resource wastage due to unsuccessful allocations for 2D-PURA algorithm. Numerical results demonstrate that the proposed method can save over 16.5 and 27 percent of mean uplink delay, compared with the 1D algorithm and the standard method, respectively.Comment: 6 pages, 6 figures, Published in 2018 IEEE Wireless Communications and Networking Conference (WCNC

    Structure and Properties of Nanocomposites Prepared from Ball Milled 7475 Aluminum Alloy with ZrO2 powders

    Get PDF

    Fluid

    Get PDF
    corecore