21 research outputs found

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt):study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol

    No full text
    BACKGROUND: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). METHODS: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. DISCUSSION: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. TRIAL REGISTRATION: Clinicaltrials.gov ( NCT03716401 )

    Inhibition of nuclear factor of activated T-cells (NFAT) suppresses accelerated atherosclerosis in diabetic mice.

    Get PDF
    Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis

    In vivo inhibition of nuclear factor of activated T-cells leads to atherosclerotic plaque regression in IGF-II/LDLR -/-ApoB100/100 mice

    Get PDF
    AIMS: Despite vast clinical experience linking diabetes and atherosclerosis, the molecular mechanisms leading to accelerated vascular damage are still unclear. Here, we investigated the effects of nuclear factor of activated T-cells inhibition on plaque burden in a novel mouse model of type 2 diabetes that better replicates human disease.METHODS & RESULTS: IGF-II/LDLR-/-ApoB100/100mice were generated by crossbreeding low-density lipoprotein receptor-deficient mice that synthesize only apolipoprotein B100 (LDLR-/-ApoB100/100) with transgenic mice overexpressing insulin-like growth factor-II in pancreatic β cells. Mice have mild hyperglycaemia and hyperinsulinaemia and develop complex atherosclerotic lesions. In vivo treatment with the nuclear factor of activated T-cells blocker A-285222 for 4 weeks reduced atherosclerotic plaque area and degree of stenosis in the brachiocephalic artery of IGF-II/LDLR-/-ApoB100/100mice, as assessed non-invasively using ultrasound biomicroscopy prior and after treatment, and histologically after termination. Treatment had no impact on plaque composition (i.e. muscle, collagen, macrophages). The reduced plaque area could not be explained by effects of A-285222 on plasma glucose, insulin or lipids. Inhibition of nuclear factor of activated T-cells was associated with increased expression of atheroprotective NOX4 and of the anti-oxidant enzyme catalase in aortic vascular smooth muscle cells.CONCLUSION: Targeting the nuclear factor of activated T-cells signalling pathway may be an attractive approach for the treatment of diabetic macrovascular complications

    Inhibition of NFAT signaling restores microvascular endothelial function in diabetic mice

    No full text
    Central to the development of diabetic macro- and microvascular disease is endothelial dysfunction, which appears well before any clinical sign but, importantly, is potentially reversible. We previously demonstrated that hyperglycemia activates nuclear factor of activated T cells (NFAT) in conduit and medium-sized resistance arteries and that NFAT blockade abolishes diabetes-driven aggravation of atherosclerosis. In this study, we test whether NFAT plays a role in the development of endothelial dysfunction in diabetes. NFAT-dependent transcriptional activity was elevated in skin microvessels of diabetic Akita (Ins21/2) mice when compared with nondiabetic littermates. Treatment of diabetic mice with the NFAT blocker A-285222 reduced NFATc3 nuclear accumulation and NFAT-luciferase transcriptional activity in skin microvessels, resulting in improved microvascular function, as assessed by laser Doppler imaging and iontophoresis of acetylcholine and localized heating. This improvement was abolished by pretreatment with the nitric oxide (NO) synthase inhibitor L-NGnitro-L-arginine methyl ester, while iontophoresis of the NO donor sodium nitroprusside eliminated the observed differences. A-285222 treatment enhanced dermis endothelial NO synthase expression and plasma NO levels of diabetic mice. It also prevented induction of inflammatory cytokines interleukin-6 and osteopontin, lowered plasma endothelin-1 and blood pressure, and improved mouse survival without affecting blood glucose. In vivo inhibition of NFAT may represent a novel therapeutic modality to preserve endothelial function in diabetes

    Impact of metabolic substrate modification on myocardial efficiency in a rat model of obesity and diabetes

    No full text
    BackgroundCongenic leptin receptor deficient rat generated by introgression of the Koletsky leptin receptor mutation into BioBreeding Diabetes Resistant rat (BBDR.lepr−/−) is a novel animal model combining obesity, systemic insulin resistance and diabetes. Systemic insulin resistance is associated with reduced myocardial glucose utilization, but its effect on myocardial external efficiency, i.e. the ability of the myocardium to convert energy into external stroke work, remains uncertain.PurposeTo characterize cardiac energy metabolism and function in BBDR.lepr−/− rats and to study the effect of dipeptidyl peptidase 4 (DPP-4) inhibitor linagliptin in this model.MethodsCardiac phenotype was evaluated in six-month-old male BBDR.lepr−/− rats (n=11) and age-matched male non-diabetic lean control littermates (BBDR.lepr+/− or BBDR.lepr+/+ rats, n=14). Of these, 7 BBDR.lepr−/− rats and 6 controls underwent cardiac ultrasound, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), and [11C]acetate PET in order to evaluate cardiac structure and function as well as glucose and oxidative metabolism. In the remaining rats, fatty acid metabolism was evaluated by [18F]fluorothia-6-heptadecanoic acid ([18F]FTHA) PET/CT. In the linagliptin intervention study, 25 BBDR.lepr−/− male rats were randomly divided into control group (n=11) that received regular chow diet and linagliptin group (n=14) that received linagliptin (10mg/kg/d) mixed in the chow diet for three months. After the intervention, the rats underwent cardiac ultrasound, [18F]FDG PET/CT, and [11C]acetate PET.ResultsCompared with controls, BBDR.lepr−/− rats showed increased left ventricle (LV) mass (∼40%, p>0.001) and higher systolic blood pressure (∼10%, p=0.02). However, fractional shortening and cardiac output were similar in both groups. Myocardial fractional uptake rate of glucose measured with [18F]FDG PET was significantly reduced (∼86%, p=0.004) (Fig. 1A, E), whereas myocardial fatty acid uptake measured by [18F]FTHA PET was not significantly increased (free fatty acid (FFA) corrected standardized uptake value (SUV) ∼21%, p=0.54) (Fig. 1B) in BBDR.lepr−/− compared to controls. Myocardial oxygen consumption assessed by [11C]acetate PET was similar in both groups (Fig. 1C, E), but LV work per gram of myocardium was reduced (∼28%, p=0.001) resulting in reduced myocardial external efficiency (∼21%, p=0.03) (Fig. 1D) in BBDR.lepr−/− compared to controls. Treatment with linagliptin significantly enhanced myocardial fractional uptake rate of glucose (∼166%, p=0.006) (Fig. 2A, C), but had no effect on efficiency of cardiac work (Fig. 2B).ConclusionsObese and diabetic BBDR.lepr−/− rats demonstrate LV hypertrophy and markedly reduced myocardial glucose utilization associated with impaired myocardial external efficiency despite normal LV systolic function. Enhancement of myocardial glucose uptake by linagliptin did not improve efficiency of cardiac work.Funding AcknowledgementType of funding sources: Public grant(s) – EU funding. Main funding source(s): IMI-SUMMI

    dvdres-sep-2017-00131-File004 – Supplemental material for <i>In vivo</i> inhibition of nuclear factor of activated T-cells leads to atherosclerotic plaque regression in IGF-II/LDLR<sup>–/–</sup>ApoB<sup>100/100</sup> mice

    No full text
    <p>Supplemental material, dvdres-sep-2017-00131-File004 for <i>In vivo</i> inhibition of nuclear factor of activated T-cells leads to atherosclerotic plaque regression in IGF-II/LDLR<sup>–/–</sup>ApoB<sup>100/100</sup> mice by Fabiana Blanco, Suvi E Heinonen, Erika Gurzeler, Lisa M Berglund, Anna-Maria Dutius Andersson, Olga Kotova, Ann-Cathrine Jönsson-Rylander, Seppo Ylä-Herttuala and Maria F Gomez in Diabetes & Vascular Disease Research</p

    dvdres-sep-2017-00131-File003 – Supplemental material for <i>In vivo</i> inhibition of nuclear factor of activated T-cells leads to atherosclerotic plaque regression in IGF-II/LDLR<sup>–/–</sup>ApoB<sup>100/100</sup> mice

    No full text
    <p>Supplemental material, dvdres-sep-2017-00131-File003 for <i>In vivo</i> inhibition of nuclear factor of activated T-cells leads to atherosclerotic plaque regression in IGF-II/LDLR<sup>–/–</sup>ApoB<sup>100/100</sup> mice by Fabiana Blanco, Suvi E Heinonen, Erika Gurzeler, Lisa M Berglund, Anna-Maria Dutius Andersson, Olga Kotova, Ann-Cathrine Jönsson-Rylander, Seppo Ylä-Herttuala and Maria F Gomez in Diabetes & Vascular Disease Research</p
    corecore