24 research outputs found

    Cytoplasmic “ciliary inclusions” in isolation are not sufficient for the diagnosis of primary ciliary dyskinesia

    Get PDF
    Background: The diagnosis of primary ciliary dyskinesia (PCD) is difficult and requires a combination of clinical features, nasal nitric oxide testing, cilia ultrastructural analysis by electron microscopy (EM), and genetics. A recently described cytoplasmic ultrastructural change termed “ciliary inclusions” was reported to be diagnostic of PCD; however, no supporting evidence of PCD was provided. In this study, we sought to confirm, or refute, the diagnosis of PCD in subjects with “ciliary inclusions” on EM. Methods: Six subjects from five families with previous lab reports of “ciliary inclusions” on EMs of ciliated cells were identified and evaluated at a Genetic Disorders of Mucociliary Clearance Consortium site. We performed a detailed clinical history, nasal nitric oxide measurement, genetic testing including whole-exome sequencing (WES), and when possible, repeat ciliary EM study. Results: Only one of six subjects had multiple and persistent clinical features congruent with PCD. No subject had situs inversus. Only one of six subjects had a very low nasal nitric oxide level. No “ciliary inclusions” were found in three subjects who had a repeat ciliary EM, and ciliary axonemal ultrastructures were normal. Genetic testing, including WES, was negative for PCD-causing genes, and for pathogenic variants in gene pathways that might cause “ciliary inclusions,” such as ciliary biogenesis. Conclusion: “Ciliary Inclusions”, in isolation, are not sufficient to diagnosis PCD. If seen, additional studies should be done to pursue an accurate diagnosis

    De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry

    Get PDF
    Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells

    Mapping and characterization of structural variation in 17,795 human genomes

    Get PDF
    A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing

    Propulsive Forces on the Flagellum during Locomotion of Chlamydomonas reinhardtii

    Get PDF
    The distributed propulsive forces exerted on the flagellum of the swimming alga Chlamydomonas reinhardtii by surrounding fluid were estimated from experimental image data. Images of uniflagellate mutant Chlamydomonas cells were obtained at 350 frames/s with 125-nm spatial resolution, and the motion of the cell body and the flagellum were analyzed in the context of low-Reynolds-number fluid mechanics. Wild-type uniflagellate cells, as well as uniflagellate cells lacking inner dynein arms (ida3) or outer dynein arms (oda2) were studied. Ida3 cells exhibit stunted flagellar waveforms, whereas oda2 cells beat with lower frequency. Image registration and sorting algorithms provided high-resolution estimates of the motion of the cell body, as well as detailed kinematics of the flagellum. The swimming cell was modeled as an ellipsoid in Stokes flow, propelled by viscous forces on the flagellum. The normal and tangential components of force on the flagellum (fN and fT) were related by resistive coefficients (CN and CT) to the corresponding components of velocity (VN and VT).The values of these coefficients were estimated by satisfying equilibrium requirements for force and torque on the cell. The estimated values of the resistive coefficients are consistent among all three genotypes and similar to theoretical predictions

    ε-Tubulin Is an Essential Component of the Centriole

    Get PDF
    Centrioles and basal bodies are cylinders composed of nine triplet microtubule blades that play essential roles in the centrosome and in flagellar assembly. Chlamydomonas cells with the bld2-1 mutation fail to assemble doublet and triplet microtubules and have defects in cleavage furrow placement and meiosis. Using positional cloning, we have walked 720 kb and identified a 13.2-kb fragment that contains ε-tubulin and rescues the Bld2 defects. The bld2-1 allele has a premature stop codon and intragenic revertants replace the stop codon with glutamine, glutamate, or lysine. Polyclonal antibodies to ε-tubulin show peripheral labeling of full-length basal bodies and centrioles. Thus, ε-tubulin is encoded by the BLD2 allele and ε-tubulin plays a role in basal body/centriole morphogenesis
    corecore