80 research outputs found
Visual Function Assessment in Simulated Real-Life Situations in HIV-Infected Subjects
Visual function abnormalities are common in people living with HIV disease (PLWH) without retinitis, even after improvement in immune status. Abnormalities such as reduced contrast sensitivity, altered color vision, peripheral visual field loss, and electrophysiological changes are related to a combination of retinal dysfunctions, involving inner and outer retinal structures. The standard protocol for testing vision performance in clinical practice is the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. However, this method poorly correlates with activities of daily living that require patients to assess visual stimuli in multiple light/contrast conditions, and with limited time. We utilized a novel interactive computer program (Central Vision Analyzer) to analyze vision performance in PLWH under a variety of light/contrast conditions that simulate stressful and real-world environments. The program tests vision in a time-dependent way that we believe better correlates with daily living activities than the non-timed ETDRS chart. We also aimed to correlate visual scores with retinal neuro-fiber layer thickness on optical coherence tomography. Here we show that visual acuity is more affected in PLWH in comparison to HIV-seronegative controls in varying contrast and luminance, especially if the nadir CD4+ T-cell count was lower than 100 cells/mm3. Visual impairment reflects the loss of retinal nerve fiber layer thickness especially of the temporal-inferior sector. In PLWH the ETDRS chart test led to better visual acuity compared to the Central Vision Analyzer equivalent test, likely because patients had indefinite time to guess the letters. This study confirms and strengthens the finding that visual function is affected in PLWH even in absence of retinitis, since we found that the HIV serostatus is the best predictor of visual loss. The Central Vision Analyzer may be useful in the diagnosis of subclinical HIV-associated visual loss in multiple light/contrast conditions, and may offer better understanding of this entity called "neuroretinal disorder"
Inheritance of old mitochondria controls early CD8(+) T cell fate commitment and is regulated by autophagy
T cell immunity is impaired during ageing, particularly in memory responses needed for efficient vaccination. Autophagy and asymmetric cell division (ACD) are cell biological mechanisms key to memory formation, which undergo a decline upon ageing. However, despite the fundamental importance of these processes in cellular function, the link between ACD and in vivo fate decisions has remained highly correlative in T cells and in the field of mammalian ACD overall. Here we provide robust causal evidence linking ACD to in vivo T cell fate decisions and our data are consistent with the concept that initiation of asymmetric T cell fates is regulated by autophagy. Analysing the proteome of first-daughter CD8(+) T cells following TCR-triggered activation, we reveal that mitochondrial proteins rely on autophagy for their asymmetric inheritance and that damaged mitochondria are polarized upon first division. These results led us to evaluate whether mitochondria were asymmetrically inherited and to functionally address their impact on T cell fate. For this we used a novel mouse model that allows sequential tagging of mitochondria in mother and daughter cells, enabling their isolation and subsequent in vivo analysis of CD8(+) T cell progenies based on pre-mitotic cell cargo. Autophagy-deficient CD8(+) T cells showed impaired clearance and symmetric inheritance of old mitochondria, suggesting that degradation events promote asymmetry and are needed to generate T cells devoid of old organelles. Daughter cells inheriting old mitochondria are more glycolytic and upon adoptive transfer show reduced memory potential, whereas daughter cells that have not inherited old mitochondria from the mother cell are long-lived and expand upon cognate-antigen challenge. Proteomic and single-cell transcriptomic analysis of cells inheriting aged mitochondria suggest that their early fate divergence relies on one carbon metabolism as a consequence of poor mitochondrial quality and function. These findings increase our understanding of how T cell diversity is early-imprinted during division and will help foster the development of strategies to modulate T cell function
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 1986. 137: 245-254.
Item does not contain fulltex
Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1
This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton
- …
