14 research outputs found

    Evaluation eutrophisation DCSMM. SynthÚse ECO-MARS 3D sur la période 2015/2020

    No full text
    Ce rapport est la mise Ă  jour de la synthĂšse des rĂ©sultats d’ECO-MARS sur la pĂ©riode 2015/2020 en rajoutant l’annĂ©e 2020. Il prĂ©sente : 1. le contexte hydrologique de la pĂ©riode 2015-2020 au regard des 6 principaux fleuves de la façade Manche/Atlantique ; 2. une Ă©valuation des performances du modĂšle ECO-MARS sur la zone Manche/Golfe de Gascogne (MANGA) sur la pĂ©riode 2015/2020 au regard des mesures disponibles (nutriments, chlorophylle, oxygĂšne dissous) issues des rĂ©seaux cĂŽtiers d’observations (REPHY, SOMLIT, MOLIT), des donnĂ©es de campagnes (IBTS, PELGAS, CGFS) et de l’observation satellitaire; 3. une Ă©valuation du bon Ă©tat Ă©cologique (BEE) des masses d’eaux DCE, UMR et UGE ainsi qu’au niveau des paysages marins prĂ©sents dans la zone Manche/golfe de Gascogne sur la pĂ©riode 2015-2020 pour certains paramĂštres relatifs au descripteur 5 de la DCSMM « eutrophisation » (NID, PID, chlorophylle a, oxygĂšne dissous)

    Evaluation eutrophisation DCSMM. Optimisation des apports en N et P des principaux fleuves de la façade Manche/Atlantique française

    No full text
    En 2013/2014, l’étude financĂ©e Ă  50% par l’ONEMA (MĂ©nesguen et Dussauze, 2015)1 avait pour but de dĂ©terminer par la modĂ©lisation le bassin rĂ©cepteur marin des 45 principaux bassins versants (ou groupes de bassins versants) français de la façade Manche-Atlantique. Ces diffĂ©rents panaches statistiques calculĂ©s pour chaque fleuve ont ensuite Ă©tĂ© utilisĂ©s pour calculer un scĂ©nario optimal de rĂ©duction diffĂ©renciĂ©e fleuve par fleuve des apports en azote et phosphore dans le but de se rapprocher du Bon Etat Ecologique au regard des critĂšres dĂ©finis par la Directive Cadre sur l’Eau (DCE) et la Directive Cadre StratĂ©gie pour le Milieu Marin (DCSMM). Ces critĂšres Ă©taient des concentrations marines en NID et PID Ă  ne pas dĂ©passer. DiffĂ©rentes zones cibles ont Ă©tĂ© testĂ©es (bande 0-50m, masses d’eaux DCE prises individuellement et ensemble, sous-rĂ©gion DCSMM prises individuellement et ensemble) ainsi que diffĂ©rents objectifs de concentrations en NID et PID reprĂ©sentant un Bon Etat Ecologique et un TrĂšs Bon Etat (respectivement 15 et 30 ÎŒmol/L pour le NID et 1 et 2 ÎŒmol/L pour le PID). Les rĂ©sultats de l’optimisation ont montrĂ© que si on souhaitait ramener toute la façade Manche-Atlantique en dessous des seuils de TrĂšs bon Etat et Bon Etat pour le nitrate, les apports des principaux fleuves (Garonne, Dordogne, Loire et Seine) devaient ĂȘtre abattus drastiquement (>60% pour le Bon Etat et >80% pour le TrĂšs Bon Etat). Certains petits fleuves cĂŽtiers (Bresle, Arques, Yar-Douron, Haute-Perche, Falleron, Sallertaine, Vie, Seudre) pouvaient se contenter d’un abattement faible, voire nul. Les abattements proposĂ©s en phosphore Ă©taient plus faibles (entre 10 et 20% pour les principaux fleuves exceptĂ©e la Seine : ~60%). Pour autant, le critĂšre « concentrations en nutriments » n’est pas le plus pertinent pour Ă©valuer l’impact de l’eutrophisation. Les impacts directs (concentrations en chlorophylle a dans la colonne d’eau) ou indirects (concentrations en oxygĂšne dissous dans la colonne d’eau) reflĂštent de maniĂšre plus correcte l’état d’eutrophisation d’une masse d’eau. Dans le cadre du projet europĂ©en EMoSEM, une relation linĂ©aire entre le percentile 90 de chlorophylle a sur la pĂ©riode productive issue de l’observation satellitaire et les concentrations hivernales en NID et PID calculĂ©es Ă  partir des rĂ©sultats du modĂšle ECO-MARS 3D a Ă©tĂ© Ă©tablie. Cette relation linĂ©aire a ensuite Ă©tĂ© utilisĂ©e afin d’obtenir des valeurs seuils en azote et phosphore Ă  ne pas dĂ©passer pour atteindre un bon Ă©tat vis-Ă -vis d’une certaine valeur de chlorophylle a. L’algorithme d’optimisation du simplexe a Ă©tĂ© appliquĂ© aux apports en azote et phosphore de 4 groupes de fleuves (fleuves anglais, fleuves hollandais et belges, fleuves français de la MancheEst et fleuves français de la façade Atlantique) et aux masses d’eaux DCE et DCSMM françaises et belges (MĂ©nesguen et al, 2018)2. Afin de gĂ©nĂ©raliser cette mĂ©thode aux 45 principaux bassins versants de la façade Manche/Atlantique française, cette nouvelle Ă©tude a donc pour objectif de calculer un nouveau scĂ©nario optimal de rĂ©duction diffĂ©renciĂ©e fleuve par fleuve des apports en azote et phosphore mais en se basant sur un objectif « concentration en chlorophylle a ». Cette optimisation se basera : ‱ sur les bassins rĂ©cepteurs marins de chaque bassin versant considĂ©rĂ© Ă©tablis lors de l’étude de 2013/2014 ; ‱ sur les concentrations en nutriments mesurĂ©es sur la pĂ©riode 2012/2017 pour chaque fleuve; ‱ sur le percentile 90 de chlorophylle a calculĂ© Ă  partir des observations satellitaires sur la pĂ©riode productive de la pĂ©riode 2012/2017 ; ‱ sur les concentrations moyennes hivernales calculĂ©es Ă  partir des rĂ©sultats du modĂšle ECO-MARS 3D appliquĂ© Ă  la zone Manche/Gascogne (MANGA) sur la pĂ©riode 2012/2017

    Modélisation de la production primaire et de la croissance de l'hußtre Crassostrea gigas en Baie de Bourgneuf

    No full text
    Le modĂšle hydrodynamique/biogĂ©ochimique ECO-MARS 30 est appliquĂ© Ă  la Baie de Bourgneuf (mailles des 500 mĂštres) afin d'une part, de modĂ©liser la production primaire et d'autre part, d'introduire le modĂšle de croissance de l'huĂźtre Crassostrea gigas (Bari liĂ© et al, 1997). Le modĂšle n'Ă©tant muni ni d'un module de remise en suspension du sĂ©diment, ni d'un module permettant de reprĂ©senter le compartiment  microphytobenthique, une approximation (forçage d'une climatologie pour la matiĂšre en suspension, utilisation d'un terme source dans la couche de fond pour la chlorophylle) a Ă©tĂ© effectuĂ©e afin de reprĂ©senter de maniĂšre schĂ©matique le gradient Nord-Sud de turbiditĂ©, les rapides changements de turbiditĂ© qui sont mesurĂ©s au niveau des bancs ostrĂ©icoles au cours d'une marĂ©e et la remise en suspension du microphytobenthos d'oĂč provient la plus grande partie de la chlorophylle mesurĂ©e sur les sites ostrĂ©icoles du nord de la baie. Les rĂ©sultats obtenus en termes de production primaire ont Ă©tĂ© comparĂ©s Ă  des mesures in-situ et Ă  une moyenne annuelle de chlorophylle issue de mesures satellitaires et sont nettement en accord avec elles. En ce qui concerne la croissance de l'huĂźtre, les rĂ©sultats obtenus en tenant compte d'une couverture en filtreurs rĂ©aliste (huĂźtres cultivĂ©es, huĂźtres sauvages, crĂ©pidules et moules), mĂȘme s'ils peuvent ĂȘtre amĂ©liorĂ©s, se comparent correctement avec les mesures effectuĂ©es en 2005 sur les sites ostrĂ©icoles de Graisseloup et de la Couplasse. Le modĂšle tend Ă©galement Ă  corrĂ©ler de maniĂšre correcte l'hĂ©tĂ©rogĂ©nĂ©itĂ© de la croissance de l'huĂźtre avec la turbiditĂ© avec des maximums de poids sec obtenus au sud de la baie (zone peu turbide) supĂ©rieurs Ă  ceux obtenus au nord de la baie (zones trĂšs turbides). DiffĂ©rents scĂ©narios de suppression de filtreurs compĂ©titeurs et de modification du stock d'huĂźtres cultivĂ©es ont Ă©tĂ© testĂ©s Ă  partir de ces rĂ©sultats de croissance. Il apparaĂźt ainsi qu'une suppression du stock d'huĂźtres sauvages aurait un impact beaucoup plus sensible sur la croissance des huĂźtres cultivĂ©es que la suppression du stock de crĂ©pidules. Il apparaĂźt Ă©galement que la croissance est trĂšs sensible aux stocks d'huĂźtres cultivĂ©es avec en moyenne une variation de 28 %du maximum poids sec pour une variation du stock de 25 Ă  250 % des 46 000 tonnes prises comme valeur actuelle. Le modĂšle peut cependant ĂȘtre largement amĂ©liorĂ©, notamment dans la reprĂ©sentation de la spatialisation de la croissance par la mise en place d'un module cc Ă©rosion-dĂ©pĂŽt " qui permettra de reprĂ©senter de maniĂšre plus rĂ©aliste la turbiditĂ© dans la baie

    Détermination des "bassins récepteurs" marins des principaux fleuves français de la façade Manche-Atlantique, et de leurs rÎles respectifs dans l'eutrophisation phyto-planctonique des masses d'eau DCE et des sous-régions DCSMM. Phase 1 (2013) : Calcul de scénarios optimaux à partir des " bassins récepteurs". Phase 2 (2014) : Simulation de scénarios imposés et des scénarios optimaux

    No full text
    - This study (granted up to 50% by the French Office for Water and Aquatic Environments ONEMA) aimed at determining by modelling (hydrodynamical/biogeochemical ECOMARS3D model) the marine "receiving basins" of the main tributaries to the French waters of the English Channel and the Bay of Biscay. Knowing the respective part of each of these marine "receiving basins" in winter nutrient distribution, some optimal scenarios of nutrient loading reduction can be computed for nitrate or phosphate in order to bring back any marine water to the Good Ecological Status regarding eutrophication, at the best efficiency/cost ratio. - The study encompasses 45 watersheds (or clusters of neighboring watersheds) which have been retained because of their sizes and flow rates. For each of these 45 watersheds in the wider sense, the study has computed the 10 year statistical map of the corresponding so-called "receiving basin". The calculus has been done using a general 4km x 4km grid and 3 refined 1km x 1km grids covering the French coastal zone of this area. - At any point of the marine domain, the "receiving basins" allow the computation of the dilution of a conservative tracer. Winter concentrations of nitrate or phosphate can then be instantaneously computed on the Channel-Biscay continental shelf for various scenarios of nutrient loadings from the 45 rivers. If one can impose: 1/ the marine winter concentration not to be exceeded to keep a Good Ecological Status, 2/ a proxy for the cost of the unitary abatement of the nutrient concentration in each river, this linear dilution model can be coupled to a global optimisation method, in order to compute the set of concentrations in the 45 rivers which allows to obtain at the lowest price the best Ecological Status everywhere in the maritime domain under consideration. Two global optimisation techniques (linear Simplexe method and quadratic Beale's method) have been compared on various marine target areas : the marine WFD water masses considered separately or together, the 3 MSFD French sub-regions of the Channel-Biscay area, or the coastal strip laying between the seashore and the 50m isobath. Computations have been made using two successive nitrate and phosphate thresholds at sea, which are associated respectively to the WFD eutrophication Very Good Status and Good Status. This exercise has shown that focusing on a single small marine target area can sometimes prescribe a strong abatement of concentrations in the sole small neighboring rivers, but that dealing with a large marine target area points always to the biggest tributaries as being the main nutrient sources to be diminished, whereas small tributaries can be neglected. As it contains the whole big river plumes, the MSFD target requires stronger abatement of nitrate in some watersheds than the WFD target, which is limited to a thin, 1 nautical mile wide strip along the coasts. Whereas very few rivers (except the Seine river) require any abatement of their phosphate loadings, almost all the medium and large rivers require very strong abatements of their nitrate concentrations. The 7 main rivers (mean flow rate > 50 m3/s) should move from their actual 15 mg/L NO3 to 5 mg/L NO3, whereas the 38 minor rivers should go back from their actual 24 mg/L NO3 to 13 mg/L NO3. - As the most reliable descriptors of eutrophication impact are not the winter nutrient levels, but the spring-summer levels of chlorophyll and bottom dissolved oxygen, the ECOMARS3D model of the pelagic ecosystem has been used to simulate the real situation during the 2000-2010 decade and validated against a coastal data base. In order to assess the effects of loading reduction on some criteria of marine eutrophication, this reference simulation has then been compared to simulations using reduced river loadings: pristine loadings, globally optimal scenarios coming from the previous linear approach, academic modifications (-50%). The results are: - in eutrophicated areas, the chlorophyll 90th percentile begins to decrease significantly only in case of 50% reduction of loadings, or even more in the Bay of Biscay, in front of Loire and Vilaine estuaries. This mirrors the behavior of the main component of the phytoplankton, the diatoms. - the dinoflagellate annual maximum however seems to respond quickly to nitrogen loading decrease, and this is enhanced in case of coupled phosphate loading decrease. In case of 50% reduction, the dinoflagellates vanish in the bay of Seine, whereas on the continental shelf of Biscay, their decrease may reach 90% in case of severe reductions. - the oxygen 10th percentile is nearly insensitive to loading reductions: it may increase by 10% in case of the severe loading reductions.Cette Ă©tude financĂ©e Ă  50% par l'ONEMA avait pour but de dĂ©terminer par la modĂ©lisation (modĂšle hydrodynamique/biologique ECOMARS3D) le bassin rĂ©cepteur marin des principaux bassins versants français de la façade Manche-Atlantique, puis d'utiliser la responsabilitĂ© respective de chacun de ces bassins rĂ©cepteurs pour calculer un scĂ©nario globalement optimal de rĂ©duction diffĂ©renciĂ©e fleuve par fleuve des apports en azote et phosphore, de façon Ă  tenter de se rapprocher au meilleur rapport efficacitĂ©/coĂ»t du Bon Etat Ecologique gĂ©nĂ©ral quant aux critĂšres europĂ©ens d'eutrophisation. - L’étude porte sur 45 bassins versants (ou regroupement de BV voisins) qui ont Ă©tĂ© retenus essentiellement en raison de leur taille et de leur dĂ©bit. Pour chacun de ces 45 BV au sens large, l'Ă©tude calcule la carte statistique du "bassin rĂ©cepteur" correspondant. Ce calcul a Ă©tĂ© fait sur la grille gĂ©nĂ©rale Ă  4km (rang 1) et sur la grille raffinĂ©e Ă  1km contenant l'exutoire du BV. - Ces "bassins rĂ©cepteurs" permettant de calculer en tout point du domaine marin la dilution d'un traceur conservatif, les concentrations hivernales du nitrate et du phosphate sur le plateau Manche-Atlantique peuvent donc ĂȘtre cartographiĂ©es instantanĂ©ment pour divers scĂ©narios de concentration de ces deux nutriments dans les fleuves. Si l'on fixe: 1/ la concentration marine hivernale Ă  ne pas dĂ©passer pour garder un Bon Etat Ecologique, 2/ un coĂ»t pour l'abaissement d'une unitĂ© de concentration dans chacun des fleuves, on peut coupler ce modĂšle linĂ©aire de dilution Ă  une mĂ©thode d'optimisation globale qui fournit l'abaissement des concentrations des 45 fleuves permettant de se rapprocher au mieux du Bon Etat Ecologique dans tout le domaine marin choisi, et ce pour un coĂ»t minimal. Deux techniques d'optimisation globale (Simplexe linĂ©aire et mĂ©thode quadratique de Beale) ont Ă©tĂ© comparĂ©es pour diverses zones-cibles marines : les masses d'eau marine DCE prises une par une ou globalement, les 3 sous-rĂ©gions DCSMM de Manche-Atlantique prises sĂ©parĂ©ment, la bande marine cĂŽtiĂšre comprise entre le rivage et l'isobathe 50m. Les calculs ont Ă©tĂ© faits en imposant successivement deux seuils de nitrate et phosphate en mer, qui permettraient aux zones-cibles marines de se trouver respectivement en TrĂšs Bon Etat ou en Bon Etat. Il en ressort que la fixation d'une petite zone-cible unique peut parfois requĂ©rir un abaissement fort des concentrations dans les seuls petits fleuves cĂŽtiers concernĂ©s, mais que dĂšs que l'on Ă©tend la zone-cible, les grands fleuves redeviennent les principales sources de nutriments Ă  diminuer, tandis qu'il ne devient plus nĂ©cessaire d'agir sur plusieurs petits cĂŽtiers, du moins si on ne considĂšre que l'eutrophisation phytoplanctonique; les prolifĂ©rations macroalgales trĂšs littorales (marĂ©es vertes), non traitĂ©es ici, requiĂšrent au contraire l'abattement du nitrate dans ces petits fleuves cĂŽtiers. Contenant l'entiĂšretĂ© des panaches de dilution des fleuves, la cible DCSMM globale nĂ©cessite des abattements du nitrate plus poussĂ©s dans certains bassins versants que la cible DCE globale, qui se limite Ă  une mince frange cĂŽtiĂšre. Alors que pour le phosphate, peu de fleuves (sauf la Seine) requiĂšrent un abattement de leurs apports, les 7 fleuves principaux (dĂ©bit moyen > 50 m3/s) requiĂšrent un trĂšs fort abattement de leurs teneurs en nitrate (des 15 mg/L NO3 actuels, il faudrait les ramener Ă  5 mg/L NO3), tandis que les 38 fleuves mineurs devraient descendre des 24 mg/L NO3 actuels Ă  13 mg/L NO3. - Les descripteurs les plus pertinents des impacts de l'eutrophisation n'Ă©tant pas les nutriments hivernaux, mais bien ce en quoi ils se transforment partiellement et non-linĂ©airement durant la pĂ©riode productive (chlorophylle, oxygĂšne dissous), le modĂšle d'Ă©cosystĂšme pĂ©lagique ECOMARS3D a Ă©tĂ© utilisĂ© pour simuler la situation rĂ©elle de la dĂ©cennie 2000-2010 et la valider sur des sĂ©ries de mesures cĂŽtiĂšres. Puis le modĂšle a Ă©tĂ© utilisĂ© pour simuler divers scĂ©narios alternatifs d'apports fluviaux : scĂ©narios globalement optimaux de l'Ă©tude linĂ©aire prĂ©cĂ©dente, ou modification simultanĂ©e sur tous les BV Ă  un taux homogĂšne (pristine, -50%), Ces scĂ©narios montrent que : - en zone eutrophe, la valeur du percentile 90 de chlorophylle sur la pĂ©riode productive ne commence Ă  baisser sensiblement (entre 30 et 40%) qu’à partir d’une diminution de 50% des apports en nitrate et phosphate en Manche-Est, voire mĂȘme plus dans le Golfe de Gascogne (seulement Ă  partir d’une rĂ©duction de 70% des apports en nitrate de la Loire et de la Vilaine). Ceci reflĂšte la rĂ©ponse de la composante majoritaire du phytoplancton : les diatomĂ©es. - par contre, le maximum annuel de dinoflagellĂ©s baisse trĂšs sensiblement dĂšs 50 % de rĂ©duction des apports en NO3 et de façon encore plus marquĂ©e en cas de rĂ©duction simultanĂ©e des apports en phosphate. En baie de Seine, les concentrations simulĂ©es en dinoflagellĂ©s s'annulent quasiment dĂšs 50% de rĂ©duction des apports en NO3. Dans la partie atlantique, l’abattement des concentrations varie entre 70 et 90% pour les scĂ©narios les plus exigeants et entre 50 et 80% pour les scĂ©narios moins sĂ©vĂšres. - le percentile 10 des concentrations en oxygĂšne dissous au fond ne rĂ©agit que trĂšs peu aux diffĂ©rents scĂ©narios de rĂ©duction d'apports (augmentations entre 5% et 10 % selon l'intensitĂ© des rĂ©ductions d'apports

    Designing optimal scenarios of nutrient loading reduction in a WFD/MSFD perspective by using passive tracers in a biogeochemical-3D model of the English Channel/Bay of Biscay area

    No full text
    In most cases, eutrophication of a coastal zone is a multi-source phenomenon. The questions often raised by authorities about these different sources are: what are their marine area of influence and their respective role in the eutrophication process? A first answer to these questions is proposed for the bay of Biscay-English Channel French coasts, using a hydrodynamical model alone with a passive tracer for each of the main 45 French watersheds of the domain. The statistical marine receiving area of each river is then defined over a whole decade (2000–2010) by using different percentiles (respectively the 10th, 50th, 90th ones) of the distribution of tracer values in each mesh of the grid: this enables to map the dilution areas of each river plume respectively for low water regime, mean flow rate regime and flood regime. If one can impose: 1/the marine winter concentration not to be exceeded to keep a Good Ecological Status, 2/a proxy for the cost of the unitary abatement of the nutrient concentration in each river, this linear dilution model can be coupled to a global optimisation method, in order to compute the set of concentrations in the 45 rivers which allows to obtain at the lowest price the best Ecological Status everywhere in the maritime domain under consideration. Two global optimisation techniques (linear Simplex method and quadratic Beale's method) have been compared on various marine target areas: the marine WFD water masses considered separately or together, the 3 MSFD French sub-regions of the Channel-Biscay area, or the coastal strip laying between the seashore and the 50 m isobath. Computations have been made using two successive nitrate and phosphate thresholds at sea, which are associated respectively to the WFD eutrophication High Status and Good Status. This exercise has shown that focusing on a single small marine target area can sometimes prescribe a strong abatement of concentrations in the sole small neighbouring rivers, but that dealing with a large marine target area points always to the biggest tributaries as being the main nutrient sources to be diminished, whereas small tributaries can be neglected. As it contains the whole big river plumes, the MSFD target requires stronger abatement of nitrate in some watersheds than the WFD target, which is limited to a thin, 1 nautical mile wide strip along the coasts. Whereas very few rivers (e.g. the Seine river) require some abatement of their phosphate loadings, almost all the medium and large French rivers would require very strong abatements (between 50 and 80%) of their nitrate concentrations. To verify this quick linear approach restricted to winter nutrients, a full non-linear, coupled biogeochemical-hydrodynamical model has been used to compute the effect of these optimal nutrient reduction scenarios on the most characteristic descriptors of eutrophication: chlorophyll 90th percentile, dinoflagellate maximum and bottom oxygen concentration 10th percentile. The results show that nutrient loading reductions enabling a Good Ecological Status everywhere for winter marine nutrients would still leave some marine areas in a Bad Ecological Status in terms of chlorophyll conten

    Operational modelling of nutrients and phytoplancton in the bay of biscay and english channel

    No full text
    Nitrate loadings to the French coastal waters of the Bay of Biscay and the English Channel have increased from 5 to 10 times during the four last decades, due to runoff on intensively fertilized agricultural watersheds. Eutrophication of this coastal zone is now a recurrent problem, with wellknown direct impacts (Ulva “green tides” on beaches, excessive phytoplanktonic blooms responsible for “coloured waters” and bottom hypoxia events offshore), but also indirect enhancement of the toxicity of some phytoplankton species, caused for instance by increased N:Si ratio in the coastal sea. In order to better guide the decision makers about nutrient loading reduction, Ifremer uses the so-called ECO-MARS3D biogeochemicalhydrodynamical model to simulate the present situation in terms of phytoplanktonic biomasses and oxygen concentrations, along with more specific information: concentrations of 3 harmful phytoplanktonic species (Pseudo-nitzschia, Karenia, Phaeocystis) and ASP toxin (domoic acid) in the sea water. The simulations of recent years have been compared favorably to satellite images and field measurements, and an operational version currently runs on the previmer.org site. An original tracking method of nitrogen (or phosphorus) coming from any source allows the assessment of the quantitative role of the 3 main rivers (Seine, Loire, Gironde) nitrogen loads in the phytoplankton blooms. The model points out the bay of Vilaine as very sensitive to bottom oxygen depletion in summer, and can be compared on-line to the automatic measurements coming from the MOLIT buoy. Through the appearance of too high N :Si ratio in the nutrients, the model also provides some explanation to the patchy location of ASP toxin recorded by the REPHY monitoring network

    Modélisation de la turbidité en Baie de Bourgneuf (France)

    Get PDF
    International audienceUn modÚle numérique est mis en place afin de modéliser la turbidité en Baie de Bourgneuf (France) à partir d'une couverture réaliste de sédiments fins. Trois agents hydrodynamiques sont pris en compte : les courants de marée ; la houle se propageant des grandes profondeurs vers la cÎte et le clapot généré localement par le vent. Cette modélisation permet de représenter le gradient Nord/Sud de turbidité, et les rapides changements de turbidité qui sont mesurés au niveau de la zone intertidale au cours d'un cycle de marée et cela en accord avec les mesures in situ effectuées sur l'estran et les mesures satellites

    Ecological model of the Bay of Biscay and English Channel shelf for environmental status assessment part 1: Nutrients, phytoplankton and oxygen

    No full text
    International audienceEuropean directives (Water Framework Directive - WFD and Marine Strategy Framework Directive - MSFD) require a regular survey of several descriptors of the Environmental Status of coastal waters of the North-east Atlantic Ocean. Especially for the MSFD, which may concern large continental shelf areas where measurements are scarce, realistic ecological models can help assessing the Environmental Status. The ECO-MARS3D model of the pelagic ecosystem of the Bay of Biscay and English Channel continental shelf (NE Atlantic) has been developed for these applied purposes and validated against various types of historic data. This first paper deals with the basic biogeochemical version, which contains inorganic nutrients (NH4, NO3, PO4, Si(OH)4), three phytoplankton bulk types (diatoms, nanoflagellates and dinoflagellates), two zooplankton bulk types, particulate detrital forms and dissolved oxygen. A second paper presents a version of this model including 3 harmful phytoplanktonic groups. A simulation covering the 2000-2010 decade is compared to satellite sea surface data for temperature and surface chlorophyll, to the Southampton-Bilbao and Ouistreham-Portsmouth ferrybox surface data for temperature, salinity, chlorophyll and nutrients, to point samples provided by the French network of phytoplankton monitoring (REPHY) for inorganic nutrients and chlorophyll, and to high frequency time series of dissolved oxygen measured by a moored automatic buoy. From a spatial point of view, the model provides realistic fields of annual means of surface temperature (but with a systematic bias of about + 1.0 °C) and phytoplanktonic biomass. From a seasonal point of view, the temperature and salinity follow correctly the observed variations. For nutrient and total chlorophyll, the model succeeds in reproducing the difference amounting to one order of magnitude between the North Sea coastal zones and the oligotrophic oceanic zone above the abyssal plain of the bay of Biscay. It also reproduces the spring-neap tide oscillation visible in satellite observations of surface chlorophyll. Simulated seasonal cycles are realistic in the coastal stations, but the French Atlantic coast seems slightly too nutrient-rich. In coastal eutrophicated areas, the model does not produce chlorophyll peaks as high as measured. In the Vilaine bay (France), the summer hypoxic conditions (down to 4 mg/L O2 or less) are correctly reproduced. This ecological model has been used off-line to map some classical eutrophication descriptors (winter DIN and DIP, March-October 90th percentile of chlorophyll) used by the WFD and MSFD European directives. It has also been turned into an operational real-time mode, as part of the French Previmer project (now: http://marc.ifremer.fr/resultats/production_primaire)

    How to avoid eutrophication in coastal seas? A new approach to derive river-specific combined nitrate and phosphate maximum concentrations

    No full text
    Since 1950, increase in nitrogen (N) and phosphorus (P) river loadings in the North-East Atlantic (NEA) continental seas has induced a deep change in the marine coastal ecosystems, leading to eutrophication symptoms in some areas. In order to recover a Good Ecological Status (GES) in the NEA, as required by European Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD), reductions in N- and P-river loadings are necessary but they need to be minimal due to their economic impact on the farming industry. In the frame of the “EMoSEM” European project, we used two marine 3D ecological models (ECO-MARS3D, MIRO&CO) covering the Bay of Biscay, the English Channel and the southern North Sea to estimate the contributions of various sources (riverine, oceanic and atmospheric) to the winter nitrate and phosphate marine concentrations. The various distributed descriptors provided by the simulations allowed also to find a log-linear relationship between the 90th percentile of satellite-derived chlorophyll concentrations and the “fully bioavailable” nutrients, i.e. simulated nutrient concentrations weighted by light and stoichiometric limitation factors. Any GES threshold on the 90th percentile of marine chlorophyll concentration can then be translated in maximum admissible ‘fully bioavailable’ DIN and DIP concentrations, from which an iterative linear optimization method can compute river-specific minimal abatements of N and P loadings. The method has been applied to four major river groups, assuming either a conservative (8 Όg Chl L−1) or a more socially acceptable (15 Όg Chl L−1) GES chlorophyll concentration threshold. In the conservative case, maximum admissible winter concentrations for nutrients correspond to marine background values, whereas in the lenient case, they are close to values recommended by the WFD/MSFD. Both models suggest that to reach chlorophyll GES, strong reductions of DIN and DIP are required in the Eastern French and Belgian-Dutch river groups

    Development and validation of a sediment dynamics model within a coastal operational oceanographic system

    No full text
    The rising interest in environmental and ecosystem dynamics have lead coastal oceanographers to not only investigate the “traditional” physical parameters describing the ocean state and its dynamics (e.g. temperature, salinity, currents, water levels in coastal areas), but to also account for the dynamics of parameters describing its biogeochemical components. To that end, MARS3D regional and coastal modelling system has been coupled to ecosystem modules (ECO-MARS3D, ECO3M) as well as sediment dynamics modules (MARS3D-SEDIM): sediment, nutrient and primary production contents can be considered as the lower level environment and ecosystem descriptors of the “biogeochemical” ocean. Early investments into physical and biological analysis at the regional scale have led to the development of several operational configurations within PREVIMER since 2006 for physical and biological parameters, providing 3 to 5-day forecasts as well as hindcasts. The more recent introduction of sediment-related parameters into the operational chain required validating computed sediment transport at the regional scale. Such validation is mostly accessible through indirect measurements – namely turbidity measurements in the water column or derived from satellite data. This paper describes the main features of MARS3D sediment module, the sensitivity analyses and the validation procedures based on dedicated data acquisition, as well as the assessment of the operational configuration focused on the Bay of Biscay continental shelf. Comparison between in situ measurements and satellite data shows a fairly systematic overestimation of the satellite-derived SPM in Southern Brittany; this result stresses the need for further investigation regarding the correct quantitative satellite SPM determination at all times and all places. On the other hand, numerical results highlight the difficulty to simultaneously predict the correct magnitude of bottom and surface concentrations
    corecore