1,670 research outputs found

    AutoClickChem: Click Chemistry in Silico

    Get PDF
    Academic researchers and many in industry often lack the financial resources available to scientists working in “big pharma.” High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu

    Inverse problem of photoelastic fringe mapping using neural networks

    Get PDF
    This paper presents an enhanced technique for inverse analysis of photoelastic fringes using neural networks to determine the applied load. The technique may be useful in whole-field analysis of photoelastic images obtained due to external loading, which may find application in a variety of specialized areas including robotics and biomedical engineering. The presented technique is easy to implement, does not require much computation and can cope well within slight experimental variations. The technique requires image acquisition, filtering and data extraction, which is then fed to the neural network to provide load as output. This technique can be efficiently implemented for determining the applied load in applications where repeated loading is one of the main considerations. The results presented in this paper demonstrate the novelty of this technique to solve the inverse problem from direct image data. It has been shown that the presented technique offers better result for the inverse photoelastic problems than previously published works

    Solar-Cycle Characteristics Examined in Separate Hemispheres: Phase, Gnevyshev Gap, and Length of Minimum

    Full text link
    Research results from solar-dynamo models show the northern and southern hemispheres may evolve separately throughout the solar cycle. The observed phase lag between the hemispheres provides information regarding the strength of hemispheric coupling. Using hemispheric sunspot-area and sunspot-number data from Cycles 12 - 23, we determine how out of phase the separate hemispheres are during the rising, maximum, and declining period of each solar cycle. Hemispheric phase differences range from 0 - 11, 0 - 14, and 2 - 19 months for the rising, maximum, and declining periods, respectively. The phases appear randomly distributed between zero months (in phase) and half of the rise (or decline) time of the solar cycle. An analysis of the Gnevyshev gap is conducted to determine if the double-peak is caused by the averaging of two hemispheres that are out of phase. We confirm previous findings that the Gnevyshev gap is a phenomenon that occurs in the separate hemispheres and is not due to a superposition of sunspot indices from hemispheres slightly out of phase. Cross hemispheric coupling could be strongest at solar minimum, when there are large quantities of magnetic flux at the Equator. We search for a correlation between the hemispheric phase difference near the end of the solar cycle and the length of solar-cycle minimum, but found none. Because magnetic flux diffusion across the Equator is a mechanism by which the hemispheres couple, we measured the magnetic flux crossing the Equator by examining magnetograms for Solar Cycles 21 - 23. We find, on average, a surplus of northern hemisphere magnetic flux crossing during the mid-declining phase of each solar cycle. However, we find no correlation between magnitude of magnetic flux crossing the Equator, length of solar minima, and phase lag between the hemispheres.Comment: 15 pages, 7 figure

    Multifunctional P-Doped TiO2 Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials

    Get PDF
    Multifunctional P-doped TiO2 thin films were synthesized by atmospheric pressure chemical vapor deposition (APCVD). This is the first example of P-doped TiO2 films with both P5+ and P3– states, with the relative proportion being determined by synthesis conditions. This technique to control the oxidation state of the impurities presents a new approach to achieve films with both self-cleaning and TCO properties. The origin of electrical conductivity in these materials was correlated to the incorporation of P5+ species, as suggested by Hall Effect probe measurements. The photocatalytic performance of the films was investigated using the model organic pollutant, stearic acid, with films containing predominately P3– states found to be vastly inferior photocatalysts compared to undoped TiO2 films. Transient absorption spectroscopy studies also showed that charge carrier concentrations increased by several orders of magnitude in films containing P5+ species only, whereas photogenerated carrier lifetimes—and thus photocatalytic activity—were severely reduced upon incorporation of P3– species. The results presented here provide important insights on the influence of dopant nature and location within a semiconductor structure. These new P-doped TiO2 films are a breakthrough in the development of multifunctional advanced materials with tuned properties for a wide range of applications

    Adaptation to Increasing Risks of Forest Fires

    Get PDF
    This work presents a quantitative assessment of adaptation options in the context of forest fires in Europe under projected climate change. A standalone fire model (SFM) based on a state-of-the-art, large-scale forest fire modeling algorithm is used to explore fuel removal through prescribed burnings and improved fire suppression as adaptation options. The climate change projections are provided by three climate models reflecting the SRES A2 scenario. The SFM’s modeled burned areas for selected test countries in Europe show satisfying agreement with observed data coming from two different sources (European Forest Fire Information System and Global Fire Emissions Database). Our estimation of the potential increase in burned areas in Europe under ‘‘no adaptation’’ scenario is about 200% by 2090 (compared with 2000-2008). The application of prescribed burnings has the potential to keep that increase below 50%. Improvements in fire suppression might reduce this impact even further, for example, boosting the probability of putting out a fire within a day by 10% would result in about a 30% decrease in annual burned areas. By taking more adaptation options into consideration, such as using agricultural fields as fire breaks, behavioral changes, and long-term options, burned areas can be potentially reduced even further

    Rational Design of Carbon Nitride Photoelectrodes with High Activity Toward Organic Oxidations

    Get PDF
    Carbon nitride (CNx) is a light-absorber with excellent performance in photocatalytic suspension systems, but the activity of CNx photoelectrodes has remained low. Here, cyanamide-functionalized CNx (NCNCNx) was co-deposited with ITO nanoparticles on a 1.8 Å thick alumina-coated FTO electrode. Transient absorption spectroscopy and impedance measurements support that ITO acts as a conductive binder and improves electron extraction from the NCNCNx, whilst the alumina underlayer reduces recombination losses between the ITO and the FTO glass. The Al2O3|ITO : NCNCNx film displays a benchmark performance for CNx-based photoanodes with an onset of −0.4 V vs a reversible hydrogen electrode (RHE), and 1.4±0.2 mA cm−2 at 1.23 V vs RHE during AM1.5G irradiation for the selective oxidation of 4-methylbenzyl alcohol. This assembly strategy will improve the exploration of CNx in fundamental and applied photoelectrochemical (PEC) studies.The authors thank Dr. Carla Casadevall, Dr. Motiar Rahaman, and Dr. Mark Bajada (University of Cambridge) for helpful discussions. This work was funded by the European Union's Horizon 2020 project SOLAR2CHEM (Marie Skłodowska-Curie Actions with Grant Agreement No. 861151, C.P., E.R.) and Methasol (Grant Agreement No. 101022649, S.A.J.H., J.D.), the EPSRC (NanoDTC, EP/L015978/1, and EP/S022953, T.U., E.R.), Generalitat Valenciana (APOSTD/2021/251 fellowship, C.A.M.), and the project PID2020-116093RB-C41 by MCIN/AEI/10.13039/501100011033/ (S.G.). The authors acknowledge the use of the Cambridge XPS System, which is part of Sir Henry Royce Institute - Cambridge Equipment, EPSRC grant EP/P024947/1, and the EPSRC Underpinning Multi-User Equipment Call (EP/P030467/1) for the Talos F200X G2 TEM
    corecore