4 research outputs found

    Characterisation and noise analysis of high Ge content p-channel SiGe MOSFETs fabricated using virtual substrates

    Get PDF
    This thesis demonstrates the advantages and disadvantages of investigated p-type SiGe MOSFETs with high Ge content Si1#xGex p-channel grown on Si1#yGey virtual substrate (VS) (x "0'709,y"030'9, y "0'30'5) in comparison with conventional Si devices. The ways to overcome current difficulties in conventional Si technology and mixed SiGe-Si technology are shown. Current-voltage (I-V) and capacitance-voltage (C-V) DC characteristics for p-channel Si/Si1#xGex/Si1#yGey hetero-MOSFETs with high Ge content (x "0'709,y"030'9, y"0'30'5) are reported. Enhancement in the maximum drain current for the p-SiGe devices in comparison with p-Si control is 2.5-3.0 times. DC characteristic simulations of SiGe p-channel MOSFETs were used to improve the accuracy of MOSFET and heterostructure parameters extraction. Calibrated during the simulation theoretical models were used for future design. The effective mobility, the source-drain access resistance, the doping profile, the layers thickness, oxide/semiconductor interface charge and other important characteristics were extracted. The effective mobility values, extracted for p-Si0%3Ge0%7 MOSFETs, exceed the hole mobility in a conventional Si p-MOS device by a factor of 3.5 and reach the mobility of conventional Si n-MOS transistors. The peak value of me f f = 760 cm2V#1s#1 at field 0.08 MVcm#1 was obtained for p-Si/Si0%2Ge0%8/ Si0%5Ge0%5 MOSFETs. Efficiency of special n-type doped layer, also known as "punch-through" stopper, introduced into heterostructure is shown. Perfect I-V and also low frequency noise characteristics of investigated MOSFET show that the p-type Si/Si1#xGex/Si1#yGey (x "0'7 09,x0'9, x y "0'3$0'4) heterostructures with "punch-through" stopper could be very impressive opportunity to conventional Si for modern semiconductor industry. For the first time, quantitative explanation of the low frequency noise reduction in metamorphic, high Ge content, SiGe p-MOSFETs compared to Si p-MOSFETs have been proposed. Quantitative analysis demonstrates the importance of both carrier number fluctuations and correlated mobility fluctuations (CMF) components to the 1/ f noise of surface channel Si p-MOSFET, but the absence of CMF for buried channel p-Si0%3Ge0%7 and p- Si0%2Ge0%8 MOSFETs. The low frequency noise was measured to be three times smaller for a 0.55 mm effective gate length p-Si0%3Ge0%7 MOSFET than the Si control, at linear regime (VDS = -50 mV) and high gate overdrive voltage (Vgt= -1.5 V). This result is very important, because we have reduction in LF noise at high gate overdrive voltages, which are typical for analogue and power electronics application. Both DC and low frequency noise characteristics show that access source and drain resistance for metamorphic p-SiGe MOSFETs (RS +RD ,1.5-2.0kW !mm) roughly 2 times lower then for conventional p-Si MOSFETs

    Reduced 1/f noise in p-Si0.3Ge0.7 metamorphic metal–oxide–semiconductor field-effect transistor

    Get PDF
    We have demonstrated reduced 1/f low-frequency noise in sub-µm metamorphic high Ge content p-Si0.3Ge0.7 metal–oxide–semiconductor field-effect transistors (MOSFETs) at 293 K. Three times lower normalized power spectral density (NPSD) SID/ID2 of drain current fluctuations over the 1–100 Hz range at VDS = –50 mV and VG–Vth = –1.5 V was measured for a 0.55 µm effective gate length p-Si0.3Ge0.7 MOSFET compared with a p-Si MOSFET. Performed quantitative analysis clearly demonstrates the importance of carrier number fluctuations and correlated mobility fluctuations (CMFs) components of 1/f noise for p-Si surface channel MOSFETs, and the absence of CMFs for p-Si0.3Ge0.7 buried channel MOSFETs. This explains the reduced NPSD for p-Si0.3Ge0.7 MOSFETs in strong inversion

    DC and low-frequency noise analysis for buried SiGe channel metamorphic PMOSFETs with high Ge content, Journal of Telecommunications and Information Technology, 2005, nr 1

    Get PDF
    Measurements of current drive in p-Si1-xGex MOSFETs, with x = 0.7, 0.8 reveal an enhancement ratio of over 2 times as compared to a Si device at an effective channel length of 0.55 um. They also show a lower knee voltage in the output I-V characteristics while retaining similar values of drain induced barrier lowering, subthreshold swing, and off current for devices with a Sb punch-through stopper. For the first time, we have quantitatively explained the low-frequency noise reduction in metamorphic, high Ge content, SiGe PMOSFETs compared to Si PMOSFETs

    Characterisation and noise analysis of high Ge content p-channel SiGe MOSFETs fabricated using virtual substrates

    No full text
    This thesis demonstrates the advantages and disadvantages of investigated p-type SiGe MOSFETs with high Ge content Si1#xGex p-channel grown on Si1#yGey virtual substrate (VS) (x "0'709,y"030'9, y "0'30'5) in comparison with conventional Si devices. The ways to overcome current difficulties in conventional Si technology and mixed SiGe-Si technology are shown. Current-voltage (I-V) and capacitance-voltage (C-V) DC characteristics for p-channel Si/Si1#xGex/Si1#yGey hetero-MOSFETs with high Ge content (x "0'709,y"030'9, y"0'30'5) are reported. Enhancement in the maximum drain current for the p-SiGe devices in comparison with p-Si control is 2.5-3.0 times. DC characteristic simulations of SiGe p-channel MOSFETs were used to improve the accuracy of MOSFET and heterostructure parameters extraction. Calibrated during the simulation theoretical models were used for future design. The effective mobility, the source-drain access resistance, the doping profile, the layers thickness, oxide/semiconductor interface charge and other important characteristics were extracted. The effective mobility values, extracted for p-Si0%3Ge0%7 MOSFETs, exceed the hole mobility in a conventional Si p-MOS device by a factor of 3.5 and reach the mobility of conventional Si n-MOS transistors. The peak value of me f f = 760 cm2V#1s#1 at field 0.08 MVcm#1 was obtained for p-Si/Si0%2Ge0%8/ Si0%5Ge0%5 MOSFETs. Efficiency of special n-type doped layer, also known as "punch-through" stopper, introduced into heterostructure is shown. Perfect I-V and also low frequency noise characteristics of investigated MOSFET show that the p-type Si/Si1#xGex/Si1#yGey (x "0'7 09,x0'9, x y "0'3$0'4) heterostructures with "punch-through" stopper could be very impressive opportunity to conventional Si for modern semiconductor industry. For the first time, quantitative explanation of the low frequency noise reduction in metamorphic, high Ge content, SiGe p-MOSFETs compared to Si p-MOSFETs have been proposed. Quantitative analysis demonstrates the importance of both carrier number fluctuations and correlated mobility fluctuations (CMF) components to the 1/ f noise of surface channel Si p-MOSFET, but the absence of CMF for buried channel p-Si0%3Ge0%7 and p- Si0%2Ge0%8 MOSFETs. The low frequency noise was measured to be three times smaller for a 0.55 mm effective gate length p-Si0%3Ge0%7 MOSFET than the Si control, at linear regime (VDS = -50 mV) and high gate overdrive voltage (Vgt= -1.5 V). This result is very important, because we have reduction in LF noise at high gate overdrive voltages, which are typical for analogue and power electronics application. Both DC and low frequency noise characteristics show that access source and drain resistance for metamorphic p-SiGe MOSFETs (RS +RD ,1.5-2.0kW !mm) roughly 2 times lower then for conventional p-Si MOSFETs.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (Great Britain) (EPSRC)GBUnited Kingdo
    corecore