20 research outputs found

    P-type conductivity in Sn-doped Sb2Se3

    Get PDF
    Antimony selenide (Sb2Se3) is a promising absorber material for thin-film photovoltaics. However, certain areas of fundamental understanding of this material remain incomplete and this presents a barrier to further efficiency gains. In particular, recent studies have highlighted the role of majority carrier type and extrinsic doping in drastically changing the performance of high efficiency devices [1]. Herein, Sndoped Sb2Se3 bulk crystals are shown to exhibit p-type conductivity using Hall effect and hot-probe measurements. The measured conductivities are higher than those achieved through native defects alone, but with a carrier density (up to 7.4 × 1014 cm−3) several orders of magnitude smaller than the quantity of Sn included in the source material. Additionally, a combination of ultraviolet, X-ray and hard X-ray photoemission spectroscopies are employed to obtain a non-destructive depth profile of the valence band maximum, confirming p-type conductivity and indicating a majority carrier type inversion layer at the surface. Finally, these results are supported by density functional theory calculations of the defect formation energies in Sn-doped Sb2Se3, showing a possible limit on the carrier concentration achievable with Sn as a dopant. This study sheds light on the effectiveness of Sn as a p-type dopant in Sb2Se3 and highlights avenues for further optimisation of doped Sb2Se3 for solar energy devices

    Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

    Full text link
    Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.Comment: 160 pages, 21 figure

    Sb 5s2 lone pairs and band alignment of Sb2Se3: a photoemission and density functional theory study

    No full text
    Lone pair Sb 5s orbitals are identified at the valence band maximum of Sb2Se3 bulk crystals using photoemission and density functional theory. The resulting band alignments are determined and implications for solar cell applications are discussed.</p

    Multi‐Phase Sputtered TiO2‐Induced Current–Voltage Distortion in Sb2Se3 Solar Cells

    Get PDF
    Despite the recent success of CdS/Sb2Se3 heterojunction devices, cadmium toxicity, parasitic absorption from the relatively narrow CdS band gap (2.4 eV) and multiple reports of inter-diffusion at the interface forming Cd(S,Se) and Sb2(S,Se)3 phases, present significant limitations to this device architecture. Among the options for alternative partner layers in antimony chalcogenide solar cells, the wide band gap, non-toxic titanium dioxide (TiO2) has demonstrated the most promise. It is generally accepted that the anatase phase of the polymorphic TiO2 is preferred, although there is currently an absence of analysis with regard to phase influence on device performance. This work reports approaches to distinguish between TiO2 phases using both surface and bulk characterization methods. A device fabricated with a radio frequency (RF) magnetron sputtered rutile-TiO2 window layer (FTO/TiO2/Sb2Se3/P3HT/Au) achieved an efficiency of 6.88% and near-record short–circuit current density (Jsc) of 32.44 mA cm−2, which is comparable to established solution based TiO2 fabrication methods that produced a highly anatase-TiO2 partner layer and a 6.91% efficiency device. The sputtered method introduces reproducibility challenges via the enhancement of interfacial charge barriers in multi-phase TiO2 films with a rutile surface and anatase bulk. This is shown to introduce severe S-shaped current–voltage (J–V) distortion and a drastic fill–factor (FF reduction in these devices

    Isotype Heterojunction Solar Cells Using n-Type Sb2Se3 Thin Films

    Get PDF
    The carrier-type of the emerging photovoltaic Sb2Se3 was evaluated for both thin films and bulk crystals via a range of complementary techniques. X-ray photoelectron spectroscopy (XPS), hot probe, Hall effect, and surface photovoltage spectroscopy showed films and crystals synthesized from the Sb2Se3 granulate material to be n-type with chlorine identified as an unintentional n-type dopant via secondary ion mass spectrometry analysis. The validity of chlorine as a dopant was confirmed by the synthesis of intrinsic crystals from metallic precursors and subsequent deliberate n-type doping by the addition of MgCl2. Chlorine was also shown to be a substitutional n-type shallow dopant by density functional theory calculations. TiO2/Sb2Se3 n–n isotype heterojunction solar cells with 7.3% efficiency are subsequently demonstrated, with band alignment analyzed via XPS
    corecore