240 research outputs found

    Profitability of Interest-free vs. Interest-based Banks in Turkey

    Get PDF
    Islamic banking is consistent with Islamic law and guided by Islamic economics. They are prohibited from charging or paying interest, and can operate only on the basis of the profit-sharing arrangements. Islamic banking has been gaining momentum on a global scale for the last 30 years. It is estimated that the assets of Islamic banks in Turkey will exceed US$25 billion in the next decade and will make up 10% of the total banking system. Therefore, this study compares Islamic banks with interest-based banks to measure their profitability. It also investigates how Islamic financing techniques are used by Islamic Banks.Turkish banks, interest-based banking, interest-free banking, Islamic banking

    Experimental and Data-driven Workflows for Microstructure-based Damage Prediction

    Get PDF
    Materialermüdung ist die häufigste Ursache für mechanisches Versagen. Die Degradationsmechanismen, welche die Lebensdauer von Bauteilen bei vergleichsweise ausgeprägten zyklischen Belastungen bestimmen, sind gut bekannt. Bei Belastungen im makroskopisch elastischen Bereich hingegen, der (sehr) hochzyklischen Ermüdung, bestimmen die innere Struktur eines Werkstoffs und die Wechselwirkung kristallografischer Defekte die Lebensdauer. Unter diesen Umständen sind die inneren Degradationsphänomene auf der mikroskopischen Skala weitgehend reversibel und führen nicht zur Bildung kritischer Schädigungen, die kontinuierlich wachsen können. Allerdings sind einige Kornensembles in polykristallinen Metallen, je nach den lokalen mikrostrukturellen Gegebenheiten, anfällig für Schädigungsinitiierung, Rissbildung und -wachstum und wirken daher als Schwachstellen. Daher weisen Bauteile, die solchen Belastungen ausgesetzt sind, oft eine ausgeprägte Lebensdauerstreuung auf. Die Tatsache, dass ein umfassendes mechanistisches Verständnis für diese Degradationsprozesse in verschiedenen Werkstoffen nicht vorliegt, hat zur Folge, dass die derzeitigen Modellierungsbemühungen die mittlere Lebensdauer und ihre Varianz in der Regel nur mit unbefriedigender Genauigkeit vorhersagen. Dies wiederum erschwert die Bauteilauslegung und macht die Nutzung von Sicherheitsfaktoren während des Dimensionierungsprozesses erforderlich. Abhilfe kann geschaffen werden, indem umfangreiche Daten zu Einflussfaktoren und deren Wirkung auf die Bildung initialer Ermüdungsschädigungen erhoben werden. Die Datenknappheit wirkt sich nach wie vor negativ auf Datenwissenschaftler und Modellierungsexperten aus, die versuchen, trotz geringer Stichprobengröße und unvollständigen Merkmalsräumen, mikrostrukturelle Abhängigkeiten abzuleiten, datengetriebene Vorhersagemodelle zu trainieren oder physikalische, regelbasierte Modelle zu parametrisieren. Die Tatsache, dass nur wenige kritische Schädigungen bezogen auf das gesamte Probenvolumen auftreten und die hochzyklische Ermüdung eine Vielzahl unterschiedlicher Abhängigkeiten aufweist, impliziert einige Anforderungen an die Datenerfassung und -verarbeitung. Am wichtigsten ist, dass die Messtechniken so empfindlich sind, dass nuancierte Schwankungen im Probenzustand erfasst werden können, dass die gesamte Routine effizient ist und dass die korrelative Mikroskopie räumliche Informationen aus verschiedenen Messungen miteinander verbindet. Das Hauptziel dieser Arbeit besteht darin, einen Workflow zu etablieren, der den Datenmangel behebt, so dass die zukünftige virtuelle Auslegung von Komponenten effizienter, zuverlässiger und nachhaltiger gestaltet werden kann. Zu diesem Zweck wird in dieser Arbeit ein kombinierter experimenteller und datenverarbeitender Workflow vorgeschlagen, um multimodale Datensätze zu Ermüdungsschädigungen zu erzeugen. Der Schwerpunkt liegt dabei auf dem Auftreten von lokalen Gleitbändern, der Rissinitiierung und dem Wachstum mikrostrukturell kurzer Risse. Der Workflow vereint die Ermüdungsprüfung von mesoskaligen Proben, um die Empfindlichkeit der Schädigungsdetektion zu erhöhen, die ergänzende Charakterisierung, die multimodale Registrierung und Datenfusion der heterogenen Daten, sowie die bildverarbeitungsbasierte Schädigungslokalisierung und -bewertung. Mesoskalige Biegeresonanzprüfung ermöglicht das Erreichen des hochzyklischen Ermüdungszustands in vergleichsweise kurzen Zeitspannen bei gleichzeitig verbessertem Auflösungsvermögen der Schädigungsentwicklung. Je nach Komplexität der einzelnen Bildverarbeitungsaufgaben und Datenverfügbarkeit werden entweder regelbasierte Bildverarbeitungsverfahren oder Repräsentationslernen gezielt eingesetzt. So sorgt beispielsweise die semantische Segmentierung von Schädigungsstellen dafür, dass wichtige Ermüdungsmerkmale aus mikroskopischen Abbildungen extrahiert werden können. Entlang des Workflows wird auf einen hohen Automatisierungsgrad Wert gelegt. Wann immer möglich, wurde die Generalisierbarkeit einzelner Workflow-Elemente untersucht. Dieser Workflow wird auf einen ferritischen Stahl (EN 1.4003) angewendet. Der resultierende Datensatz verknüpft unter anderem große verzerrungskorrigierte Mikrostrukturdaten mit der Schädigungslokalisierung und deren zyklischer Entwicklung. Im Zuge der Arbeit wird der Datensatz wird im Hinblick auf seinen Informationsgehalt untersucht, indem detaillierte, analytische Studien zur einzelnen Schädigungsbildung durchgeführt werden. Auf diese Weise konnten unter anderem neuartige, quantitative Erkenntnisse über mikrostrukturinduzierte plastische Verformungs- und Rissstopmechanismen gewonnen werden. Darüber hinaus werden aus dem Datensatz abgeleitete kornweise Merkmalsvektoren und binäre Schädigungskategorien verwendet, um einen Random-Forest-Klassifikator zu trainieren und dessen Vorhersagegüte zu bewerten. Der vorgeschlagene Workflow hat das Potenzial, die Grundlage für künftiges Data Mining und datengetriebene Modellierung mikrostrukturempfindlicher Ermüdung zu legen. Er erlaubt die effiziente Erhebung statistisch repräsentativer Datensätze mit gleichzeitig hohem Informationsgehalt und kann auf eine Vielzahl von Werkstoffen ausgeweitet werden

    Investigation of Different Laboratory Aging Methods of Bituminous Mixtures

    Get PDF
    The predicted performance and service life of the pavement depend largely on the properties of bitumen used in the mixtures. The most important feature of bitumen, which has profound effect on the performance of the road is durability. The durability of bitumen is expressed as the resistance to aging. In this study, the bituminous mixture aging was performed instead of bitumen aging in order to represent the aging in the field in the best possible way. The aim of this paper is to evaluate different proposed laboratory aging methods (NCHRP 09-52, NCHRP 09-54 and RILEM) in relation with the current Standard AASHTO R30 (Standard Practice For Mixture Conditioning of Hot Mix Asphalt standard) and to make comparison with the samples performance taken from the field in terms of Indirect Tensile Strength (ITS). The level of aging has also been compared with the samples taken from recently constructed pavement surface and from the five years old pavement surface. Results depicted that, laboratory aging methods revealed the field aging properties on the unaged bitumen. Based on the results, 2 hours forced draft oven aging at 135°C is recommended as short term aging condition because, 2 hours or 4 hours short term forced draft oven aging did not yield significant variation in terms of ITS values. Additionally, 120 hours (5 days) oven aging of compacted samples at 85°C can be recommended as long term aging condition

    Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning

    Get PDF
    The digitization of materials is the prerequisite for accelerating product development. However, technologically, this is only beneficial when reliability is maintained. This requires comprehension of the microstructure-driven fatigue damage mechanisms across scales. A substantial fraction of the lifetime for high performance materials is attributed to surface damage accumulation at the microstructural scale (e.g., extrusions and micro crack formation). Although, its modeling is impeded by a lack of comprehensive understanding of the related mechanisms. This makes statistical validation at the same scale by micromechanical experimentation a fundamental requirement. Hence, a large quantity of processed experimental data, which can only be acquired by automated experiments and data analyses, is crucial. Surface damage evolution is often accessed by imaging and subsequent image post-processing. In this work, we evaluated deep learning (DL) methodologies for semantic segmentation and different image processing approaches for quantitative slip trace characterization. Due to limited annotated data, a U-Net architecture was utilized. Three data sets of damage locations observed in scanning electron microscope (SEM) images of ferritic steel, martensitic steel, and copper specimens were prepared. In order to allow the developed models to cope with material-specific damage morphology and imaging-induced variance, a customized augmentation pipeline for the input images was developed. Material domain generalizability of ferritic steel and conjunct material trained models were tested successfully. Multiple image processing routines to detect slip trace orientation (STO) from the DL segmented extrusion areas were implemented and assessed. In conclusion, generalization to multiple materials has been achieved for the DL methodology, suggesting that extending it well beyond fatigue damage is feasible

    Profitability of Interest-free vs. Interest-based Banks in Turkey

    Get PDF
    Islamic banking is consistent with Islamic law and guided by Islamic economics. They are prohibited from charging or paying interest, and can operate only on the basis of the profit-sharing arrangements. Islamic banking has been gaining momentum on a global scale for the last 30 years. It is estimated that the assets of Islamic banks in Turkey will exceed US$25 billion in the next decade and will make up 10% of the total banking system. Therefore, this study compares Islamic banks with interest-based banks to measure their profitability. It also investigates how Islamic financing techniques are used by Islamic Banks

    Microstructure quality control of steels using deep learning

    Full text link
    In quality control, microstructures are investigated rigorously to ensure structural integrity, exclude the presence of critical volume defects, and validate the formation of the target microstructure. For quenched, hierarchically-structured steels, the morphology of the bainitic and martensitic microstructures are of major concern to guarantee the reliability of the material under service conditions. Therefore, industries conduct small sample-size inspections of materials cross-sections through metallographers to validate the needle morphology of such microstructures. We demonstrate round-robin test results revealing that this visual grading is afflicted by pronounced subjectivity despite the thorough training of personnel. Instead, we propose a deep learning image classification approach that distinguishes steels based on their microstructure type and classifies their needle length alluding to the ISO 643 grain size assessment standard. This classification approach facilitates the reliable, objective, and automated classification of hierarchically structured steels. Specifically, an accuracy of 96% and roughly 91% is attained for the distinction of martensite/bainite subtypes and needle length, respectively. This is achieved on an image dataset that contains significant variance and labeling noise as it is acquired over more than ten years from multiple plants, alloys, etchant applications, and light optical microscopes by many metallographers (raters). Interpretability analysis gives insights into the decision-making of these models and allows for estimating their generalization capability

    Materials fatigue prediction using graph neural networks on microstructure representations

    Get PDF
    The local prediction of fatigue damage within polycrystals in a high-cycle fatigue setting is a long-lasting and challenging task. It requires identifying grains tending to accumulate plastic deformation under cyclic loading. We address this task by transcribing ferritic steel microtexture and damage maps from experiments into a microstructure graph. Here, grains constitute graph nodes connected by edges whenever grains share a common boundary. Fatigue loading causes some grains to develop slip markings, which can evolve into microcracks and lead to failure. This data set enables applying graph neural network variants on the task of binary grain-wise damage classification. The objective is to identify suitable data representations and models with an appropriate inductive bias to learn the underlying damage formation causes. Here, graph convolutional networks yielded the best performance with a balanced accuracy of 0.72 and a F1_1-score of 0.34, outperforming phenomenological crystal plasticity (+ 68%) and conventional machine learning (+ 17%) models by large margins. Further, we present an interpretability analysis that highlights the grains along with features that are considered important by the graph model for the prediction of fatigue damage initiation, thus demonstrating the potential of such techniques to reveal underlying mechanisms and microstructural driving forces in critical grain ensembles

    A rare agent of spondylodiscitis in adult patient: Salmonella enteritidis

    Get PDF
    Salmonella infections are a public health problem in Turkey,as all over the world. Salmonella spp. can causevery different infections such as gastroenteritis, typhoidparatyphoidfever, bacteremia, local metastatic infectionsand chronic carriage. Salmonella spondylodiscitis occursrarely in the adult population. In this case report, we havepresented a 66 years old female patient followed with thediagnosis of rheumatoid arthritis and treated with prednisolone.The patient had a new diagnosis of Salmonellaenteritidis and we aimed to discuss similar cases by theculture of lumbar empyema culture ampiciline, cefotaxime,trimethoprim/sulfamethoxazole, ciprofloxacin was revealedthe presence of resistant S.enteritidis. The patienthas received ciprofloxacin 2x200 mg per day for 3 weeksas intravenous. And patient was discharged with advice ofusing ciprofloxacin as per oral long three months

    Microstructure quality control of steels using deep learning

    Get PDF
    In quality control, microstructures are investigated rigorously to ensure structural integrity, exclude the presence of critical volume defects, and validate the formation of the target microstructure. For quenched, hierarchically-structured steels, the morphology of the bainitic and martensitic microstructures are of major concern to guarantee the reliability of the material under service conditions. Therefore, industries conduct small sample-size inspections of materials cross-sections through metallographers to validate the needle morphology of such microstructures. We demonstrate round-robin test results revealing that this visual grading is afflicted by pronounced subjectivity despite the thorough training of personnel. Instead, we propose a deep learning image classification approach that distinguishes steels based on their microstructure type and classifies their needle length alluding to the ISO 643 grain size assessment standard. This classification approach facilitates the reliable, objective, and automated classification of hierarchically structured steels. Specifically, an accuracy of 96% and roughly 91% is attained for the distinction of martensite/bainite subtypes and needle length, respectively. This is achieved on an image dataset that contains significant variance and labeling noise as it is acquired over more than 10 years from multiple plants, alloys, etchant applications, and light optical microscopes by many metallographers (raters). Interpretability analysis gives insights into the decision-making of these models and allows for estimating their generalization capability

    Efficient reconstruction of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative microscopy

    Get PDF
    The high-temperature austenite phase is the initial state of practically all technologically relevant hot forming and heat treatment operations in steel processing. The phenomena occurring in austenite, such as recrystallization or grain growth, can have a decisive influence on the subsequent properties of the material. After the hot forming or heat treatment process, however, the austenite transforms into other microstructural constituents and information on the prior austenite morphology are no longer directly accessible. There are established methods available for reconstructing former austenite grain boundaries via metallographic etching or electron backscatter diffraction (EBSD) which both exhibit shortcomings. While etching is often difficult to reproduce and strongly depend on the investigated steel’s alloying concept, EBSD acquisition and reconstruction is rather time-consuming. But in fact, though, light optical micrographs of steels contrasted with conventional Nital etchant also contain information about the former austenite grains. However, relevant features are not directly apparent or accessible with conventional segmentation approaches. This work presents a deep learning (DL) segmentation of prior austenite grains (PAG) from Nital etched light optical micrographs. The basis for successful segmentation is a correlative characterization from EBSD, light and scanning electron microscopy to specify the ground truth required for supervised learning. The DL model shows good and robust segmentation results. While the intersection over union of 70% does not fully reflect the model performance due to the inherent uncertainty in PAG estimation, a mean error of 6.1% in mean grain size derived from the segmentation clearly shows the high quality of the result
    corecore