58 research outputs found

    Wavelet transforms in a critical interface model for Barkhausen noise

    Full text link
    We discuss the application of wavelet transforms to a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered, mainly in the adiabatic limit of very slow driving. On length scales shorter than a crossover length (which grows with the strength of surface tension), the effective interface roughness exponent ζ\zeta is ≃1.20\simeq 1.20, close to the expected value for the universality class of the quenched Edwards-Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime, shows the wavelet transform of correlations scaling as 1/f1.51/f^{1.5} for intermediate frequencies. This behavior is ascribed to intra-avalanche correlations.Comment: RevTeX, 10 pages, 9 .eps figures; Physical Review E, to be publishe

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α≈1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let

    Finite driving rates in interface models of Barkhausen noise

    Full text link
    We consider a single-interface model for the description of Barkhausen noise in soft ferromagnetic materials. Previously, the model had been used only in the adiabatic regime of infinitely slow field ramping. We introduce finite driving rates and analyze the scaling of event sizes and durations for different regimes of the driving rate. Coexistence of intermittency, with non-trivial scaling laws, and finite-velocity interface motion is observed for high enough driving rates. Power spectra show a decay ∼ω−t\sim \omega^{-t}, with t<2t<2 for finite driving rates, revealing the influence of the internal structure of avalanches.Comment: 7 pages, 6 figures, RevTeX, final version to be published in Phys. Rev.

    Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect

    Get PDF
    We study the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium. The avalanche-like motion of the domain walls between pinned configurations produces a noise known as the Barkhausen effect. We discuss experimental results on soft ferromagnetic materials, with reference to the domain structure and the sample geometry, and report Barkhausen noise measurements on Fe21_{21}Co64_{64}B15_{15} amorphous alloy. We construct an equation of motion for a flexible domain wall, which displays a depinning transition as the field is increased. The long-range dipolar interactions are shown to set the upper critical dimension to dc=3d_c=3, which implies that mean-field exponents (with possible logarithmic correction) are expected to describe the Barkhausen effect. We introduce a mean-field infinite-range model and show that it is equivalent to a previously introduced single-degree-of-freedom model, known to reproduce several experimental results. We numerically simulate the equation in d=3d=3, confirming the theoretical predictions. We compute the avalanche distributions as a function of the field driving rate and the intensity of the demagnetizing field. The scaling exponents change linearly with the driving rate, while the cutoff of the distribution is determined by the demagnetizing field, in remarkable agreement with experiments.Comment: 17 RevTeX pages, 19 embedded ps figures + 1 extra figure, submitted to Phys. Rev.

    Dynamics of a ferromagnetic domain wall and the Barkhausen effect

    Get PDF
    We derive an equation of motion for the the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium and we study the associated depinning transition. The long-range dipolar interactions set the upper critical dimension to be dc=3d_c=3, so we suggest that mean-field exponents describe the Barkhausen effect for three-dimensional soft ferromagnetic materials. We analyze the scaling of the Barkhausen jumps as a function of the field driving rate and the intensity of the demagnetizing field, and find results in quantitative agreement with experiments on crystalline and amorphous soft ferromagnetic alloys.Comment: 4 RevTex pages, 3 ps figures embedde

    Non-invasive assessment of risk for severe tachyarrhythmias by means of non-linear analysis techniques

    Get PDF
    Sudden death remains a phenomenon of disturbing proportions, displaying a mean incidence of 300,000-350,000 persons/year in the USA (0.1-0.2% of the general population). In Europe, the figures are very similar. In 90% of cases, sudden death has an arrhythmic cause. Prevention of Sudden Cardiac Death (SCD) constitutes one of the most important challenges of modern cardiology. In order to make a real progress in this field it is crucial to precisely identify increased risk for serious ventricular tachyarrhythmias. In this study the effectiveness of different methods of the non-linear analysis (NLA) of ECG in the risk stratification of patients with ventricular arrhythmias is evaluated, and these non-invasive parameters are correlated with the results of invasive electrophysiological study (EPS). We evaluated 25 patients with history of cardiac arrest, syncope, sustained or nonsustained ventricular tachycardia (VT). The study group was compared with a control group of 25 healthy subjects. All patients underwent both electrophysiologic study (EPS) and non-linear analysis (NLA) of ECG. Patients were classified through the application of a clustering procedure to the whole set of functions, and a comparison between the results of non-linear analysis of ECG and EPS was performed. Results are presented and discussed

    Non-invasive assessment of risk for severe tachyarrhythmias by means of non-linear analysis techniques

    Get PDF
    Sudden death remains a phenomenon of disturbing proportions, displaying a mean incidence of 300,000-350,000 persons/year in the USA (0.1-0.2% of the general population). In Europe, the figures are very similar. In 90% of cases, sudden death has an arrhythmic cause. Prevention of Sudden Cardiac Death (SCD) constitutes one of the most important challenges of modern cardiology. In order to make a real progress in this field it is crucial to precisely identify increased risk for serious ventricular tachyarrhythmias. In this study the effectiveness of different methods of the non-linear analysis (NLA) of ECG in the risk stratification of patients with ventricular arrhythmias is evaluated, and these non-invasive parameters are correlated with the results of invasive electrophysiological study (EPS). We evaluated 25 patients with history of cardiac arrest, syncope, sustained or nonsustained ventricular tachycardia (VT). The study group was compared with a control group of 25 healthy subjects. All patients underwent both electrophysiologic study (EPS) and non-linear analysis (NLA) of ECG. Patients were classified through the application of a clustering procedure to the whole set of functions, and a comparison between the results of non-linear analysis of ECG and EPS was performed. Results are presented and discussed

    Hysteresis and Avalanches in the Random Anisotropy Ising Model

    Get PDF
    The behaviour of the Random Anisotropy Ising model at T=0 under local relaxation dynamics is studied. The model includes a dominant ferromagnetic interaction and assumes an infinite anisotropy at each site along local anisotropy axes which are randomly aligned. Two different random distributions of anisotropy axes have been studied. Both are characterized by a parameter that allows control of the degree of disorder in the system. By using numerical simulations we analyze the hysteresis loop properties and characterize the statistical distribution of avalanches occuring during the metastable evolution of the system driven by an external field. A disorder-induced critical point is found in which the hysteresis loop changes from displaying a typical ferromagnetic magnetization jump to a rather smooth loop exhibiting only tiny avalanches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.Comment: 40 pages, 21 figures, Accepted for publication in Phys. Rev.

    Universal Pulse Shape Scaling Function and Exponents: A Critical Test for Avalanche Models applied to Barkhausen Noise

    Full text link
    In order to test if the universal aspects of Barkhausen noise in magnetic materials can be predicted from recent variants of the non-equilibrium zero temperature Random Field Ising Model (RFIM), we perform a quantitative study of the universal scaling function derived from the Barkhausen pulse shape in simulations and experiment. Through data collapses and scaling relations we determine the critical exponents τ\tau and 1/σνz1/\sigma\nu z in both simulation and experiment. Although we find agreement in the critical exponents, we find differences between theoretical and experimental pulse shape scaling functions as well as between different experiments.Comment: 19 pages (in preprint format), 5 figures, 1 tabl

    Properties of branes in curved spacetimes

    Full text link
    A generic property of curved manifolds is the existence of focal points. We show that branes located at focal points of the geometry satisfy special properties. Examples of backgrounds to which our discussion applies are AdS_m x S^n and plane wave backgrounds. As an example, we show that a pair of AdS_2 branes located at the north and south pole of the S^5 in AdS_5 x S^5 are half supersymmetric and that they are dual to a two-monopole solution of N=4 SU(N) SYM theory. Our second example involves spacelike branes in the (Lorentzian) plane wave. We develop a modified lightcone gauge for the open string channel, analyze in detail the cylinder diagram and establish open-closed duality. When the branes are located at focal points of the geometry the amplitude acquires most of the characteristics of flat space amplitudes. In the open string channel the special properties are due to stringy modes that become massless.Comment: 41 pages; v2:typos corrected, ref adde
    • …
    corecore