632 research outputs found

    Barkhausen noise in soft amorphous magnetic materials under applied stress

    Full text link
    We report experimental measurements of Barkhausen noise on Fe_{64}Co_{21}B_{15} amorphous alloy under tensile stress. We interpret the scaling behavior of the noise distributions in terms of the depinning transition of the domain walls. We show that stress induced anisotropy enhance the effect of short-range elastic interactions that dominate over long-range dipolar interactions. The universality class is thus different from the one usually observed in Barkhausen noise measurements and is characterized by the exponents \tau = 1.3 and \alpha = 1.5, for the decay of the distributions of jump sizes and durations.Comment: 6 pages, 3 .eps figures. Submitted to the 43rd Magnetism and Magnetic Materials Conference (J. Appl. Phys.

    Hysteresis and noise in ferromagnetic materials with parallel domain walls

    Full text link
    We investigate dynamic hysteresis and Barkhausen noise in ferromagnetic materials with a huge number of parallel and rigid Bloch domain walls. Considering a disordered ferromagnetic system with strong in-plane uniaxial anisotropy and in-plane magnetization driven by an external magnetic field, we calculate the equations of motion for a set of coupled domain walls, considering the effects of the long-range dipolar interactions and disorder. We derive analytically an expression for the magnetic susceptivity, related to the effective demagnetizing factor, and show that it has a logarithmic dependence on the number of domains. Next, we simulate the equations of motion and study the effect of the external field frequency and the disorder on the hysteresis and noise properties. The dynamic hysteresis is very well explained by means of the loss separation theory.Comment: 13 pages, 11 figure

    The role of stationarity in magnetic crackling noise

    Full text link
    We discuss the effect of the stationarity on the avalanche statistics of Barkhuasen noise signals. We perform experimental measurements on a Fe85_{85}B15_{15} amorphous ribbon and compare the avalanche distributions measured around the coercive field, where the signal is stationary, with those sampled through the entire hysteresis loop. In the first case, we recover the scaling exponents commonly observed in other amorphous materials (τ=1.3\tau=1.3, α=1.5\alpha=1.5). while in the second the exponents are significantly larger (τ=1.7\tau=1.7, α=2.2\alpha=2.2). We provide a quantitative explanation of the experimental results through a model for the depinning of a ferromagnetic domain wall. The present analysis shed light on the unusually high values for the Barkhausen noise exponents measured by Spasojevic et al. [Phys. Rev. E 54 2531 (1996)].Comment: submitted to JSTAT. 11 pages 5 figure

    On the power spectrum of magnetization noise

    Get PDF
    Understanding the power spectrum of the magnetization noise is a long standing problem. While earlier work considered superposition of 'elementary' jumps, without reference to the underlying physics, recent approaches relate the properties of the noise with the critical dynamics of domain walls. In particular, a new derivation of the power spectrum exponent has been proposed for the random-field Ising model. We apply this approach to experimental data, showing its validity and limitations.Comment: 8 pages, 3 .eps figures (elsart.cls style required

    Universality classes and crossover scaling of Barkhausen noise in thin films

    Full text link
    We study the dynamics of head-to-head domain walls separating in-plane domains in a disordered ferromagnetic thin film. The competition between the domain wall surface tension and dipolar interactions induces a crossover between a rough domain wall phase at short length-scales and a large-scale phase where the walls display a zigzag morphology. The two phases are characterized by different critical exponents for Barkhausen avalanche dynamics that are in quantitative agreement with experimental measurements on MnAs thin films.Comment: 5 pages, 5 figure

    Avalanches and clusters in planar crack front propagation

    Get PDF
    We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent τa=1.5\tau_{a}=1.5. We derive a scaling relation τa=2τ−1\tau_a=2\tau-1 between the local cluster exponent τa\tau_a and the global avalanche exponent τ\tau. For length scales longer than a cross-over length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions.Comment: 7 pages, 6 figures, accepted for publication in Physical Review

    The effect of disorder on transverse domain wall dynamics in magnetic nanostrips

    Get PDF
    We study the effect of disorder on the dynamics of a transverse domain wall in ferromagnetic nanostrips, driven either by magnetic fields or spin-polarized currents, by performing a large ensemble of GPU-accelerated micromagnetic simulations. Disorder is modeled by including small, randomly distributed non-magnetic voids in the system. Studying the domain wall velocity as a function of the applied field and current density reveals fundamental differences in the domain wall dynamics induced by these two modes of driving: For the field-driven case, we identify two different domain wall pinning mechanisms, operating below and above the Walker breakdown, respectively, whereas for the current-driven case pinning is absent above the Walker breakdown. Increasing the disorder strength induces a larger Walker breakdown field and current, and leads to decreased and increased domain wall velocities at the breakdown field and current, respectively. Furthermore, for adiabatic spin transfer torque, the intrinsic pinning mechanism is found to be suppressed by disorder. We explain these findings within the one-dimensional model in terms of an effective damping parameter α∗\alpha^* increasing with the disorder strength.Comment: 5 pages, 3 figure

    Etude des réactions physico-chimiques à l'interface liquide physiologique/verre bioactif

    Get PDF
    rapport Janus 2004, responsable de stage : E. Jallo
    • …
    corecore