517 research outputs found

    Predicting the expected behavior of agents that learn about agents: the CLRI framework

    Full text link
    We describe a framework and equations used to model and predict the behavior of multi-agent systems (MASs) with learning agents. A difference equation is used for calculating the progression of an agent's error in its decision function, thereby telling us how the agent is expected to fare in the MAS. The equation relies on parameters which capture the agent's learning abilities, such as its change rate, learning rate and retention rate, as well as relevant aspects of the MAS such as the impact that agents have on each other. We validate the framework with experimental results using reinforcement learning agents in a market system, as well as with other experimental results gathered from the AI literature. Finally, we use PAC-theory to show how to calculate bounds on the values of the learning parameters

    Defect and Hodge numbers of hypersurfaces

    Full text link
    We define defect for hypersurfaces with A-D-E singularities in complex projective normal Cohen-Macaulay fourfolds having some vanishing properties of Bott-type and prove formulae for Hodge numbers of big resolutions of such hypersurfaces. We compute Hodge numbers of Calabi-Yau manifolds obtained as small resolutions of cuspidal triple sextics and double octics with higher A_j singularities.Comment: 25 page

    Chen-Ruan cohomology of ADE singularities

    Full text link
    We study Ruan's \textit{cohomological crepant resolution conjecture} for orbifolds with transversal ADE singularities. In the AnA_n-case we compute both the Chen-Ruan cohomology ring HCR([Y])H^*_{\rm CR}([Y]) and the quantum corrected cohomology ring H(Z)(q1,...,qn)H^*(Z)(q_1,...,q_n). The former is achieved in general, the later up to some additional, technical assumptions. We construct an explicit isomorphism between HCR([Y])H^*_{\rm CR}([Y]) and H(Z)(1)H^*(Z)(-1) in the A1A_1-case, verifying Ruan's conjecture. In the AnA_n-case, the family H(Z)(q1,...,qn)H^*(Z)(q_1,...,q_n) is not defined for q1=...=qn=1q_1=...=q_n=-1. This implies that the conjecture should be slightly modified. We propose a new conjecture in the AnA_n-case which we prove in the A2A_2-case by constructing an explicit isomorphism.Comment: This is a short version of my Ph.D. Thesis math.AG/0510528. Version 2: chapters 2,3,4 and 5 has been rewritten using the language of groupoids; a link with the classical McKay correpondence is given. International Journal of Mathematics (to appear

    Generation of broadband VUV light using third-order cascaded processes

    Get PDF
    Includes bibliographical references (pages 013601-4).We report the first demonstration of broadband VUV light generation through cascaded nonlinear wave mixing in a gas. Using a hollow-fiber geometry to achieve broad-bandwidth phase-matching, frequency conversion of ultrashort-pulse Ti:sapphire laser pulses from the visible into the deep UV around 200 and160 nm is achieved. A new type of quasi-phase-matching is also observed in the VUV for the first time. Conversion using cascaded processes exhibits higher efficiencies, shorter pulse durations, and broader bandwidths than other schemes for generating light in the deep UV, and will enable many applications in science and technology

    Generation of broadband VUV light using third-order cascaded processes

    Get PDF
    Includes bibliographical references (pages 013601-4).We report the first demonstration of broadband VUV light generation through cascaded nonlinear wave mixing in a gas. Using a hollow-fiber geometry to achieve broad-bandwidth phase-matching, frequency conversion of ultrashort-pulse Ti:sapphire laser pulses from the visible into the deep UV around 200 and160 nm is achieved. A new type of quasi-phase-matching is also observed in the VUV for the first time. Conversion using cascaded processes exhibits higher efficiencies, shorter pulse durations, and broader bandwidths than other schemes for generating light in the deep UV, and will enable many applications in science and technology

    Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope

    Full text link
    We report on a study of the long-term stability and absolute accuracy of an atom interferometer gyroscope. This study included the implementation of an electro-optical technique to reverse the vector area of the interferometer for reduced systematics and a careful study of systematic phase shifts. Our data strongly suggests that drifts less than 96 μ\mudeg/hr are possible after empirically removing shifts due to measured changes in temperature, laser intensity, and several other experimental parameters.Comment: 4 pages, 4 figures, submitted to PR

    Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates

    Full text link
    Squeezed states, a special kind of entangled states, are known as a useful resource for quantum metrology. In interferometric sensors they allow to overcome the "classical" projection noise limit stemming from the independent nature of the individual photons or atoms within the interferometer. Motivated by the potential impact on metrology as wells as by fundamental questions in the context of entanglement, a lot of theoretical and experimental effort has been made to study squeezed states. The first squeezed states useful for quantum enhanced metrology have been proposed and generated in quantum optics, where the squeezed variables are the coherences of the light field. In this tutorial we focus on spin squeezing in atomic systems. We give an introduction to its concepts and discuss its generation in Bose-Einstein condensates. We discuss in detail the experimental requirements necessary for the generation and direct detection of coherent spin squeezing. Two exemplary experiments demonstrating adiabatically prepared spin squeezing based on motional degrees of freedom and diabatically realized spin squeezing based on internal hyperfine degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure

    Planning and Resource Allocation for Hard Real-time, Fault-Tolerant Plan Execution

    Full text link
    We describe the interface between a real-time resource allocation system with an AI planner in order to create fault-tolerant plans that are guaranteed to execute in hard real-time. The planner specifies the task set and all execution deadlines required to ensure system safety, then the resource utilization. A new interface module combines information from planning and resource allocation to enforce development of plans feasible for execution during a variety of internal system faults. Plans that over-utilize any system resource trigger feedback to the planner, which then searches for an alternate plan. A valid plan for each specified fault, including the nominal no-fault situation, is stored in a plan cache for subsequent real-time execution. We situate this work in the context of CIRCA, the Cooperative Intelligent Real-time Control Architecture, which focuses on developing and scheduling plans that make hard real-time safety guarantees, and provide an example of an autonomous aircraft agent to illustrate how our planner-resource allocation interface improves CIRCA performance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44010/1/10458_2004_Article_318111.pd
    corecore