207 research outputs found

    Ocular sonography in patients with raised intracranial pressure: the papilloedema revisited

    Get PDF
    Invasive devices are recommended for the early detection of raised intracranial pressure (ICP) after severe traumatic brain injury. Owing to contraindication or local issues, however, invasive ICP monitoring is not always possible. Moreover, a significant proportion of moderate traumatic brain injury patients (managed without invasive ICP) will develop raised ICP. Reliable noninvasive ICP techniques are therefore needed. Soldatos and colleagues report the usefulness of ocular sonography in the diagnosis of raised ICP. Focusing on cerebrospinal fluid accumulation around the retrobulbar optic nerve, they show interesting results for the optic nerve sheath diameter in the diagnosis of raised ICP. If confirmed by further studies, and despite important limitations related to sonography, this technique could serve as a screening test in patients at risk for raised ICP, when invasive monitoring is not possible or is not clearly recommended

    Changes in urine composition after trauma facilitate bacterial growth.

    Get PDF
    International audienceUNLABELLED: ABSTRACT: BACKGROUND: Critically ill patients including trauma patients are at high risk of urinary tract infection (UTI). The composition of urine in trauma patients may be modified due to inflammation, systemic stress, rhabdomyolysis, life support treatment and/or urinary catheter insertion. METHODS: Prospective, single-centre, observational study conducted in patients with severe trauma and without a history of UTIs or recent antibiotic treatment. The 24-hour urine samples were collected on the first and the fifth days and the growth of Escherichia coli in urine from patients and healthy volunteers was compared. Biochemical and hormonal modifications in urine that could potentially influence bacterial growth were explored. RESULTS: Growth of E. coli in urine from trauma patients was significantly higher on days 1 and 5 than in urine of healthy volunteers. Several significant modifications of urine composition could explain these findings. On days 1 and 5, trauma patients had an increase in glycosuria, in urine iron concentration, and in the concentrations of several amino acids compared to healthy volunteers. On day 1, the urinary osmotic pressure was significantly lower than for healthy volunteers. CONCLUSION: We showed that urine of trauma patients facilitated growth of E. coli when compared to urine from healthy volunteers. This effect was present in the first 24 hours and until at least the fifth day after trauma. This phenomenon may be involved in the pathophysiology of UTIs in trauma patients. Further studies are required to define the exact causes of such modifications
    corecore